已知曲線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)、相交于、兩點(diǎn).(
(Ⅰ)求兩點(diǎn)的極坐標(biāo);
(Ⅱ)曲線(xiàn)與直線(xiàn)為參數(shù))分別相交于兩點(diǎn),求線(xiàn)段的長(zhǎng)度.
(Ⅰ):;(Ⅱ).

試題分析:(Ⅰ)由 得:即可得到 .進(jìn)而得到點(diǎn) 的極坐標(biāo).
(Ⅱ)由曲線(xiàn) 的極坐標(biāo)方程化為,即可得到普通方程.將直線(xiàn)代入,整理得 .進(jìn)而得到.
試題解析:(Ⅰ)由得: ,即    3分
所以、兩點(diǎn)的極坐標(biāo)為:        5分
(Ⅱ)由曲線(xiàn)的極坐標(biāo)方程得其普通方程為        6分
將直線(xiàn)代入,整理得       8分
所以
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓與橢圓中心在原點(diǎn),焦點(diǎn)均在軸上,且離心率相同.橢圓的長(zhǎng)軸長(zhǎng)為,且橢圓的左準(zhǔn)線(xiàn)被橢圓截得的線(xiàn)段長(zhǎng)為,已知點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn).

⑴求橢圓與橢圓的方程;
⑵設(shè)點(diǎn)為橢圓的左頂點(diǎn),點(diǎn)為橢圓的下頂點(diǎn),若直線(xiàn)剛好平分,求點(diǎn)的坐標(biāo);
⑶若點(diǎn)在橢圓上,點(diǎn)滿(mǎn)足,則直線(xiàn)與直線(xiàn)的斜率之積是否為定值?若是,求出該定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)的焦點(diǎn)為,過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)于點(diǎn).
(Ⅰ)若(點(diǎn)在第一象限),求直線(xiàn)的方程;
(Ⅱ)求證:為定值(點(diǎn)為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知過(guò)點(diǎn)的橢圓的右焦點(diǎn)為,過(guò)焦點(diǎn)且與軸不重合的直線(xiàn)與橢圓交于,兩點(diǎn),點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱(chēng)點(diǎn)為,直線(xiàn),分別交橢圓的右準(zhǔn)線(xiàn),兩點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)的坐標(biāo)為,試求直線(xiàn)的方程;
(3)記,兩點(diǎn)的縱坐標(biāo)分別為,,試問(wèn)是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓兩焦點(diǎn)坐標(biāo)分別為,,一個(gè)頂點(diǎn)為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在斜率為的直線(xiàn),使直線(xiàn)與橢圓交于不同的兩點(diǎn),滿(mǎn)足. 若存在,求出的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓與雙曲線(xiàn)有公共的焦點(diǎn),過(guò)橢圓E的右頂點(diǎn)作任意直線(xiàn)l,設(shè)直線(xiàn)l交拋物線(xiàn)于M、N兩點(diǎn),且
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上第一象限內(nèi)的點(diǎn),點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn)為A、關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為Q,線(xiàn)段PQ與x軸相交于點(diǎn)C,點(diǎn)D為CQ的中點(diǎn),若直線(xiàn)AD與橢圓E的另一個(gè)交點(diǎn)為B,試判斷直線(xiàn)PA,PB是否相互垂直?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:的兩個(gè)焦點(diǎn)是F1(c,0),F(xiàn)2(c,0)(c>0)。
(I)若直線(xiàn)與橢圓C有公共點(diǎn),求的取值范圍;
(II)設(shè)E是(I)中直線(xiàn)與橢圓的一個(gè)公共點(diǎn),求|EF1|+|EF2|取得最小值時(shí),橢圓的方程;
(III)已知斜率為k(k≠0)的直線(xiàn)l與(II)中橢圓交于不同的兩點(diǎn)A,B,點(diǎn)Q滿(mǎn)足   ,其中N為橢圓的下頂點(diǎn),求直線(xiàn)l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)為,且點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)是橢圓長(zhǎng)軸上的一個(gè)動(dòng)點(diǎn),過(guò)作方向向量的直線(xiàn)交橢圓兩點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓 的左、右焦點(diǎn)分別是、,是橢圓右準(zhǔn)線(xiàn)上的一點(diǎn),線(xiàn)段的垂直平分線(xiàn)過(guò)點(diǎn).又直線(xiàn)按向量平移后的直線(xiàn)是,直線(xiàn)按向量平移后的直線(xiàn)是 (其中)。
(1) 求橢圓的離心率的取值范圍。
(2)當(dāng)離心率最小且時(shí),求橢圓的方程。
(3)若直線(xiàn)相交于(2)中所求得的橢圓內(nèi)的一點(diǎn),且與這個(gè)橢圓交于兩點(diǎn),與這個(gè)橢圓交于、兩點(diǎn)。求四邊形ABCD面積的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案