橢圓與雙曲線有公共的焦點(diǎn),過橢圓E的右頂點(diǎn)作任意直線l,設(shè)直線l交拋物線于M、N兩點(diǎn),且
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上第一象限內(nèi)的點(diǎn),點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為A、關(guān)于x軸的對(duì)稱點(diǎn)為Q,線段PQ與x軸相交于點(diǎn)C,點(diǎn)D為CQ的中點(diǎn),若直線AD與橢圓E的另一個(gè)交點(diǎn)為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.
(1) ;(2) .證明見解析.

試題分析:(1)設(shè)點(diǎn),
設(shè)直線 ,代入并整理得
利用


 解得,再由求得.
(2) 首先判斷得出.可通過證明,達(dá)到目的.
設(shè),得到,
將直線的方程代入橢圓的方程并整理得到得證.
試題解析:(1)設(shè)點(diǎn),
設(shè)直線 ,代入并整理得
所以        2分
故有


 解得       5分
又橢圓與雙曲線有公共的焦點(diǎn),故有
所以橢圓的方程為 .          7分
(2)
證明:設(shè),則,
將直線的方程代入橢圓的方程并整理得
      9分
由題意可知此方程必有一根
 ,
所以    12分
故有 , 即         13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,直線與圓相切.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓的交點(diǎn)為,求弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為、,橢圓上的點(diǎn)滿足,且△的面積為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左、右頂點(diǎn)分別為,過點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn),直線與直線的交點(diǎn)為,證明:點(diǎn)總在直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓(a>b>0)的離心率為,右焦點(diǎn)為(,0).
(I)求橢圓的方程;
(Ⅱ)過橢圓的右焦點(diǎn)且斜率為k的直線與橢圓交于點(diǎn)A(xl,y1),B(x2,y2),若, 求斜率k是的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,曲線、相交于、兩點(diǎn).(
(Ⅰ)求、兩點(diǎn)的極坐標(biāo);
(Ⅱ)曲線與直線為參數(shù))分別相交于兩點(diǎn),求線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:的離心率為,長軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線交橢圓C于A、B兩點(diǎn),試問:在y軸正半軸上是否存在一個(gè)定點(diǎn)M滿足,若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的一個(gè)焦點(diǎn)為,過點(diǎn)且垂直于長軸的直線被橢圓截得的弦長為;為橢圓上的四個(gè)點(diǎn)。
(Ⅰ)求橢圓的方程;
(Ⅱ)若,求四邊形的面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知的兩頂點(diǎn)坐標(biāo),圓的內(nèi)切圓,在邊,上的切點(diǎn)分別為(從圓外一點(diǎn)到圓的兩條切線段長相等),動(dòng)點(diǎn)的軌跡為曲線.

(1)求曲線的方程;
(2)設(shè)直線與曲線的另一交點(diǎn)為,當(dāng)點(diǎn)在以線段為直徑的圓上時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn),是常數(shù)),且動(dòng)點(diǎn)軸的距離比到點(diǎn)的距離小.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)(i)已知點(diǎn),若曲線上存在不同兩點(diǎn)、滿足,求實(shí)數(shù)的取值范圍;
(ii)當(dāng)時(shí),拋物線上是否存在異于、的點(diǎn),使得經(jīng)過、三點(diǎn)的圓和拋物線在點(diǎn)處有相同的切線,若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案