【題目】已知數(shù)列{an}a13,a1021,通項an相應(yīng)的函數(shù)是一次函數(shù).

(1) 求數(shù)列{an}的通項公式;

(2) {bn}是由a2,a4,a6,a8,…組成試求數(shù)列{bn}的通項公式.

【答案】1an2n12an2n14n1

【解析】試題分析:(1)一次函數(shù)對應(yīng)解析式為anknb,再利用待定系數(shù)法求k,b即得數(shù)列{an}的通項公式;(2){bn}是由{an}的偶數(shù)項組成,即bn=a2n,代入即得數(shù)列{bn}的通項公式.

試題解析:解:(1) 設(shè)anknb,a13,a1021,

解得 an2n1(nN*)

(2) {bn}是由{an}的偶數(shù)項組成,

∴ an=2n+1, bn=a2n=2×2n+1=4n+1(n∈N*).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合A是由且備下列性質(zhì)的函數(shù)組成的:

①函數(shù)的定義域是;②函數(shù)的值域是;

③函數(shù)上是增函數(shù),試分別探究下列兩小題:

(1)判斷函數(shù)數(shù)是否屬于集合A?并簡要說明理由;

(2)對于(1)中你認為屬于集合A的函數(shù),不等式

是否對于任意的恒成立?若成立,請給出證明;若不成立,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), ,且函數(shù)的圖象關(guān)于直線對稱。

(1)求函數(shù)在區(qū)間上最大值;

(2)設(shè),不等式上恒成立,求實數(shù)的取值范圍;

(3)設(shè)有唯一零點,求實數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2-2|x|-1,-3≤x≤3.

(1)證明:f(x)是偶函數(shù);

(2)指出函數(shù)f(x)的單調(diào)區(qū)間;

(3)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2-1,g(x)=

(1)求f[g(2)]和g[f(2)]的值;

(2)求f[g(x)]和g[f(x)]的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 是自然對數(shù)的底數(shù)).

1)當(dāng)時,求曲線在點處的切線方程;

(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

甲乙兩個班級進行一門課程的考試,按照學(xué)生考試成績優(yōu)秀和不優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表:

班級與成績列聯(lián)表

優(yōu) 秀

不優(yōu)秀

甲 班

10

35

乙 班

7

38

根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.01的前提下認為成績與班級有關(guān)系?

附:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質(zhì),可推出正四面體的下列一些性質(zhì),你認為比較恰當(dāng)?shù)氖牵?)

①各棱長相等,同一頂點上的任兩條棱的夾角都相等;②各個面都是全等的正三角形,相鄰兩個面所成的二面角都相等;③各個面都是全等的正三角形,同一頂點上的任兩條棱的夾角都相等。

A. B. ②③ C. ①② D. ①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)當(dāng)時,求函數(shù)處的切線方程;

(2)若函數(shù)在定義域上有且只有一個極值點,求實數(shù)的取值范圍;

(3)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案