【題目】類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質(zhì),可推出正四面體的下列一些性質(zhì),你認(rèn)為比較恰當(dāng)?shù)氖牵?)

①各棱長相等,同一頂點(diǎn)上的任兩條棱的夾角都相等;②各個面都是全等的正三角形,相鄰兩個面所成的二面角都相等;③各個面都是全等的正三角形,同一頂點(diǎn)上的任兩條棱的夾角都相等。

A. B. ②③ C. ①② D. ①②③

【答案】D

【解析】在由平面幾何的性質(zhì)類比推理空間立體幾何性質(zhì)時,我們常用的思路是:由平面幾何中點(diǎn)的性質(zhì),類比推理空間幾何中線的性質(zhì);由平面幾何中線的性質(zhì),類比推理空間幾何中面的性質(zhì);由平面幾何中面的性質(zhì),類比推理空間幾何中體的性質(zhì);或是將一個二維平面關(guān)系,類比推理為一個三維的立體關(guān)系,故類比平面內(nèi)正三角形的"三邊相等,三內(nèi)角相等”的性質(zhì),推斷:①各棱長相等,同一頂點(diǎn)上的任兩條棱的夾角都相等;②各個面都是全等的正三角形,相鄰兩個面所成的二面角都相等;③各個面都是全等的正三角形,同一頂點(diǎn)上的任兩條棱的夾角都相等。都是恰當(dāng)?shù),故選.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6名選手參賽,在第一輪筆試環(huán)節(jié)中,評委將他們的筆試成績作為樣本數(shù)據(jù),繪制成如圖所示的莖葉圖,為了增加結(jié)果的神秘感,主持人故意沒有給出甲、乙兩班最后一位選手的成績,知識告知大家,如果某位選手的成績高于90分(不含90分),則直接“晉級”.

(1)求乙班總分超過甲班的概率;

(2)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分,

①請你從平均分和方差的角度來分析兩個班的選手的情況;

②主持人從甲乙兩班所有選手成績中分別隨機(jī)抽取2個,記抽取到“晉級”選手的總?cè)藬?shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},a13,a1021通項(xiàng)an相應(yīng)的函數(shù)是一次函數(shù).

(1) 求數(shù)列{an}的通項(xiàng)公式;

(2) {bn}是由a2,a4,a6a8,…組成,試求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.

(1)U(AB);

(2)若集合C={x|2xa>0},滿足BCC,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】祖暅原理:“冪勢既同,則積不容異”.它是中國古代一個涉及幾何體體積的問題,意思是兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)為兩個同高的幾何體,的體積不相等,在等高處的截面積不恒相等,根據(jù)祖暅原理可知,的( )

A. 充分不必要條件 B. 必要不充分條件

C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)在區(qū)間上單調(diào)遞增;函數(shù)在其定義域上存在極值.

(1)若為真命題,求實(shí)數(shù)的取值范圍;

(2)如果為真命題,為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列集合間的關(guān)系:

(1)A{x|x32},B{x|2x5≥0};

(2)A{xZ|1≤x<3},B{x|x|y|,yA}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合其中,集合.

(1)若,求實(shí)數(shù)的取值范圍;

(2)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的焦點(diǎn)為,拋物線上一定點(diǎn)

1)求拋物線的方程及準(zhǔn)線的方程;

2)過焦點(diǎn)的直線(不經(jīng)過點(diǎn))與拋物線交于兩點(diǎn),與準(zhǔn)線交于點(diǎn),記的斜率分別為,問是否存在常數(shù),使得成立?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案