【題目】n種不同的顏色為下列兩塊廣告牌著色,(如圖甲、乙),要求在A,B,C,D四個區(qū)域中相鄰(有公共邊界)的區(qū)域不用同一顏色.

(1)若n=6,則為甲圖著色時共有多少種不同的方法;

(2)若為乙圖著色時共有120種不同方法,求n.

【答案】(1)480(種);(2)n=5.

【解析】試題分析:(1)由題意知本題是一個分步乘法計數(shù)原理,對區(qū)域①②③④按順序著色,第一塊有6種方法,第二塊就不能選第一塊的顏色,有5種結(jié)果,以此類推,根據(jù)分步計數(shù)原理得到結(jié)果.

(2)利用分步乘法計數(shù)原理得到不同的染色方法有n(n﹣1)(n﹣2)(n﹣3),根據(jù)共有120種結(jié)果,列出等式,解關(guān)于n的方程,得到結(jié)果.

試題解析:

(1)對區(qū)域A,B,C,D按順序著色,

共有6×5×4×4=480(種)

(2) 對區(qū)域A,B,C,D按順序著色,依次有n種、n-1種、n-2種和n-3種,由分布乘法計數(shù)原理,不同的著色方法共有n(n-1)(n-2(n-3)=120,整理得(n2-3n)(n2-3n+2)=120,(n2-3n)2+2(n2-3n)-120=0

n2-3n-10=0n2-3n+12=0(舍去),解得n=5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=-x3x2(m21)x(xR)其中m>0.

(1)當(dāng)m1,求曲線yf(x)在點(1,f(1))處的切線斜率;

(2)求函數(shù)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a<0,解關(guān)于x的不等式ax2+(1﹣a)x﹣1>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】上世紀(jì)八十年代初, 鄧小平同志曾指出“在人才的問題上,要特別強調(diào)一下,必須打破常規(guī)去發(fā)現(xiàn)、選拔和培養(yǎng)杰出的人才”. 據(jù)此,經(jīng)省教育廳批準(zhǔn),某中學(xué)領(lǐng)導(dǎo)審時度勢,果斷作出于1985年開始施行超常實驗班教學(xué)試驗的決定.一時間,學(xué)生興奮,教師欣喜,家長歡呼,社會熱議.該中學(xué)實驗班一路走來,可謂風(fēng)光無限,碩果累累,尤其值得一提的是,1990年,全國共招收150名少年大學(xué)生,該中學(xué)就有19名實驗班學(xué)生被錄取,占全國的十分之一,轟動海內(nèi)外.設(shè)該中學(xué)超常實驗班學(xué)生第x年被錄取少年大學(xué)生的人數(shù)為y.

左下表為該中學(xué)連續(xù)5年實驗班學(xué)生被錄取少年大學(xué)生人數(shù),求y關(guān)于x的線性回歸方程,并估計第6年該中學(xué)超常實驗班學(xué)生被錄取少年大學(xué)生人數(shù);

年份序號x

1

2

3

4

5

錄取人數(shù)y

10

11

14

16

19

附1:

下表是從該校已經(jīng)畢業(yè)的100名高中生錄取少年大學(xué)生人數(shù)與是否接受超常實驗班教育得到

2×2列聯(lián)表,完成上表,并回答:是否有95%以上的把握認(rèn)為“錄取少年大學(xué)生人數(shù)與是否接受超常實驗班教育有關(guān)系”.

附2:

接受超常實驗班教育

未接受超常實驗班教育

合計

錄取少年大學(xué)生

60

80

未錄取少年大學(xué)生

10

合計

30

100

0.50

0.40

0.10

005

0.455

0.708

2.706

3.841

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1= ,an= (n≥2,n∈N).
(1)試判斷數(shù)列 是否為等比數(shù)列,并說明理由;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項和Sn;
(3)設(shè)cn=ansin ,數(shù)列{cn}的前n項和為Tn . 求證:對任意的n∈N* , Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若方程所表示的曲線為C,給出下列四個命題:

①若C為橢圓,則1t4t;

②若C為雙曲線,則t4t1;

③曲線C不可能是圓;

④若C表示橢圓,且長軸在x軸上,則1t.

其中正確的命題是________(把所有正確命題的序號都填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是橢圓E (a>b>0)上一點,離心率為.

(1)求橢圓E的方程;

(2)設(shè)不過原點O的直線l與該橢圓E交于P,Q兩點,滿足直線OP,PQ,OQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù){an}滿a1=0,an+1=an+2n,那a2016的值是(
A.2014×2015
B.2015×2016
C.2014×2016
D.2015×2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠用甲、乙兩種不同工藝生產(chǎn)一大批同一種零件,零件尺寸均在[21.722.3](單位:cm)之間,把零件尺寸在[21.9,22.1)的記為一等品,尺寸在[21.8,21.9)[22.1,22.2)的記為二等品,尺寸在[21.721.8)[22.2,22.3]的記為三等品,現(xiàn)從甲、乙工藝生產(chǎn)的零件中各隨機抽取100件產(chǎn)品,所得零件尺寸的頻率分布直方圖如圖所示.

P(K2k0)

0.10

0.05

0.01

k0

2.706

3.841

6.635

附:

(1)根據(jù)上述數(shù)據(jù)完成下列2×2列聯(lián)表,根據(jù)此數(shù)據(jù),你認(rèn)為選擇不同的工藝與生產(chǎn)出一等品是否有關(guān)?

甲工藝

乙工藝

總計

一等品

非一等品

總計

(2)以上述各種產(chǎn)品的頻率作為各種產(chǎn)品發(fā)生的概率,若一等品、二等品、三等品的單件利潤分別為30元、20元、15元,你認(rèn)為以后該工廠應(yīng)該選擇哪種工藝生產(chǎn)該種零件?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案