已知無窮數(shù)列{an}的前n項(xiàng)和公式為Sn=-2n3+21n2+23n(n∈N+)則Sn( 。
分析:當(dāng)n=1時(shí),a1=S1;當(dāng)n≥2時(shí),an=Sn-Sn-1.令an≥0,解得n即可.
解答:解:當(dāng)n=1時(shí),a1=S1=-2+21+23=42.
當(dāng)n≥2時(shí),an=Sn-Sn-1=-2n3+21n2+23n-[-2(n-1)3+21(n-1)2+23(n-1)]
=-6n2+48n,
當(dāng)n=1時(shí),上式也成立.
an=-6n2+48n
令an≥0,解得n≤8.
∴數(shù)列{an}的前7或8項(xiàng)的和最大.
S8=S7=-2×73+21×72+23×7=504.
故選:C.
點(diǎn)評(píng):本題考查了利用“當(dāng)n=1時(shí),a1=S1;當(dāng)n≥2時(shí),an=Sn-Sn-1”求通項(xiàng)公式an及其數(shù)列前n項(xiàng)和的最大值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知無窮數(shù)列{an}前n項(xiàng)和Sn=
13
an-1
,則數(shù)列{an}的各項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知無窮數(shù)列{an}中a1=1,且滿足從第二項(xiàng)開始每一項(xiàng)與前一項(xiàng)的比值為同一個(gè)常數(shù)-
1
2
,則無窮數(shù)列{an}的各項(xiàng)和
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閔行區(qū)一模)已知無窮數(shù)列{an},首項(xiàng)a1=3,其前n項(xiàng)和為Sn,且an+1=(a-1)Sn+2(a≠0,a≠1,n∈N*).若數(shù)列{an}的各項(xiàng)和為-
8
3
a
,則a=
-
1
2
-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•普陀區(qū)二模)已知無窮數(shù)列{an}中,a1,a2,…,am是以10為首項(xiàng),以-2為公差的等差數(shù)列;am+1,am+2,…,a2m是以
1
2
為首項(xiàng),以
1
2
為公比的等比數(shù)列(m≥3,m∈N*);并且對(duì)一切正整數(shù)n,都有an+2m=an成立.
(1)當(dāng)m=3時(shí),請(qǐng)依次寫出數(shù)列{an}的前12項(xiàng);
(2)若a23=-2,試求m的值;
(3)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,問是否存在m的值,使得S128m+3≥2008成立?若存在,求出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知無窮數(shù)列{an}中,a1,a2,…,am構(gòu)成首項(xiàng)為2,公差為-2的等差數(shù)列am+1,am+2,…,a2m,構(gòu)成首項(xiàng)為
1
2
,公比為
1
2
的等比數(shù)列,其中m≥3,m∈N+,
(l)當(dāng)1≤n≤2m,n∈N+,時(shí),求數(shù)列{an}的通項(xiàng)公式;
(2)若對(duì)任意的n∈N+,都有an+2m=an成立.
①當(dāng)a27=
1
64
時(shí),求m的值;
②記數(shù)列{an}的前n項(xiàng)和為Sn.判斷是否存在m,使得S4m+1≥2成立?若存在,求出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案