【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn),當(dāng)圓內(nèi)接多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,由此創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點(diǎn)后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術(shù)設(shè)計(jì)的程序框圖,則輸出的n值為 (參考數(shù)據(jù):,,)
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面六個(gè)命題中,其中正確的命題序號(hào)為______________.
①函數(shù)的最小正周期為;
②函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱;
③函數(shù)的圖象關(guān)于直線對(duì)稱;
④函數(shù),的單調(diào)遞減區(qū)間為;
⑤將函數(shù)向右平移()個(gè)單位所得圖象關(guān)于軸對(duì)稱,則的最小正值為;
⑥關(guān)于的方程的兩個(gè)實(shí)根中,一個(gè)根比1大,一個(gè)根比-1小,則的取值范圍為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校初一年級(jí)全年級(jí)共有名學(xué)生,為了拓展學(xué)生的知識(shí)面,在放寒假時(shí)要求學(xué)生在假期期間進(jìn)行廣泛的閱讀,開(kāi)學(xué)后老師對(duì)全年級(jí)學(xué)生的閱讀量進(jìn)行了問(wèn)卷調(diào)查,得到了如圖所示的頻率分布直方圖(部分已被損毀),統(tǒng)計(jì)人員記得根據(jù)頻率直方圖計(jì)算出學(xué)生的平均閱讀量為萬(wàn)字.根據(jù)閱讀量分組按分層抽樣的方法從全年級(jí)人中抽出人來(lái)作進(jìn)一步調(diào)查.
(1)從抽出的人中選出人來(lái)?yè)?dān)任正副組長(zhǎng),求這兩個(gè)組長(zhǎng)中至少有一人的閱讀量少于萬(wàn)字的概率;
(2)為進(jìn)一步了解廣泛閱讀對(duì)今后學(xué)習(xí)的影響,現(xiàn)從抽出的人中挑選出閱讀量低于萬(wàn)字和高于萬(wàn)字的同學(xué),再?gòu)闹须S機(jī)選出人來(lái)長(zhǎng)期跟蹤調(diào)查,求這人中來(lái)自閱讀量為萬(wàn)到萬(wàn)字的人數(shù)的概率分布列和期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)隨著手機(jī)的發(fā)展,“微信”越來(lái)越成為人們交流的一種方式.某機(jī)構(gòu)對(duì)“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信交流”的贊成人數(shù)如下表:
年齡(單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(1)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān).
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計(jì) | |
贊成的人數(shù) | |||
不贊成的人數(shù) | |||
合計(jì) |
(2)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎(jiǎng)勵(lì),求3人中至少有1人年齡在[55,65)的概率.
參考公式:,.
參考數(shù)據(jù):
0.100 | ||||
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】美國(guó)對(duì)中國(guó)芯片的技術(shù)封鎖激發(fā)了中國(guó)“芯”的研究熱潮.某公司研發(fā)的,兩種芯片都已經(jīng)獲得成功.該公司研發(fā)芯片已經(jīng)耗費(fèi)資金千萬(wàn)元,現(xiàn)在準(zhǔn)備投入資金進(jìn)行生產(chǎn).經(jīng)市場(chǎng)調(diào)查與預(yù)測(cè),生產(chǎn)芯片的毛收入與投入的資金成正比,已知每投入千萬(wàn)元,公司獲得毛收入千萬(wàn)元;生產(chǎn)芯片的毛收入(千萬(wàn)元)與投入的資金(千萬(wàn)元)的函數(shù)關(guān)系為,其圖像如圖所示.
(1)試分別求出生產(chǎn),兩種芯片的毛收入(千萬(wàn)元)與投入資金(千萬(wàn)元)的函數(shù)關(guān)系式;
(2)現(xiàn)在公司準(zhǔn)備投入億元資金同時(shí)生產(chǎn),兩種芯片,求可以獲得的最大利潤(rùn)是多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知五面體ABCDEF中,四邊形CDEF為矩形,,CD=2DE=2AD=2AB=4,AC=,.
(1)求證:AB平面ADE;
(2)求平面EBC與平面BCF所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓()的焦點(diǎn)分別為,,離心率,過(guò)左焦點(diǎn)的直線與橢圓交于,兩點(diǎn),,且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線與橢圓有兩個(gè)不同的交點(diǎn),,且點(diǎn)在點(diǎn),之間,試求和面積之比的取值范圍(其中為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知五面體ABCDEF中,四邊形CDEF為矩形,,CD=2DE=2AD=2AB=4,AC=,.
(1)求證:AB平面ADE;
(2)求平面EBC與平面BCF所成的銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com