【題目】已知五面體ABCDEF中,四邊形CDEF為矩形,,CD=2DE=2AD=2AB=4,AC=,.
(1)求證:AB平面ADE;
(2)求平面EBC與平面BCF所成的銳二面角的余弦值.
【答案】(1)見解析; (2).
【解析】
(1)根據勾股定理得,再根據線面垂直判定定理得結果,(2)先根據條件證得直線DE,DA,DC兩兩互相垂直,再建立空間直角坐標系,設立各點坐標,利用方程組解得平面EBC和平面BCF法向量,利用向量數量積得法向量夾角,最后根據二面角與向量夾角關系得結果.
(1)因為 ,,所以
因為四邊形CDEF為矩形,所以,
因為,所以,
因為,所以
(2)因為 ,,所以,
由(1)得,所以直線DE,DA,DC兩兩互相垂直,
故以點D為坐標原點,分別以正方向為軸正方向建立空間直角坐標系,
則E(0,0,2)A(2,0,0),C(0,4,0),B(2,2,0),F(0,4,2),
設平面EBC和平面BCF法向量分別為,,
則,所以,
取得,
同理,所以
取得
設所求角為,則,即所求銳二面角的余弦值為.
科目:高中數學 來源: 題型:
【題目】設函數,,給定下列命題:
①若方程有兩個不同的實數根,則;
②若方程恰好只有一個實數根,則;
③若,總有恒成立,則;
④若函數有兩個極值點,則實數.
則正確命題的個數為( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公元263年左右,我國數學家劉徽發(fā)現,當圓內接多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術,利用割圓術劉徽得到了圓周率精確到小數點后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術設計的程序框圖,則輸出的n值為 (參考數據:,,)
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種產品的質量以其質量指標值來衡量,質量指標值越大表明質量越好,記其質量指標值
為,當時,產品為一級品;當時,產品為二級品,當時,產品為三級品,現用兩種新配方(分別稱為配方和配方)做實驗,各生產了100件這種產品,
并測量了每件產品的質量指標值,得到下面的試驗結果:(以下均視頻率為概率)
配方的頻數分配表
指標值分組 | ||||
頻數 | 10 | 30 | 40 | 20 |
配方的頻數分配表
指標值分組 |
| ||||
頻數 | 5 | 10 | 15 | 40 | 30 |
(Ⅰ)若從配方產品中有放回地隨機抽取3件,記“抽出的配方產品中至少1件二級品”為事件,求事件發(fā)生的概率;
(Ⅱ)若兩種新產品的利潤率與質量指標滿足如下關系:其中,從長期來看,投資哪種配方的產品平均利潤率較大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】玉山一中籃球體育測試要求學生完成“立定投籃”和“三步上籃”兩項測試,“立定投籃”和“三步上籃”各有2次投籃機會,先進行“立定投籃”測試,如果合格才能參加“三步上籃”測試.為了節(jié)約時間,每項測試只需且必須投中一次即為合格.小華同學“立定投籃”的命中率為,“三步上籃”的命中率為.假設小華不放棄任何一次投籃機會且每次投籃是否命中相互獨立.
(1)求小華同學兩項測試均合格的概率;
(2)設測試過程中小華投籃次數為X,求隨機變量X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)是定義域為R的偶函數.當x≥0時,,若關于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有6個不同實數根,則實數a的取值范圍是( 。
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸,建立平面直角坐標系,直線過點,傾斜角為.
(Ⅰ)求曲線的直角坐標方程與直線的參數方程;
(Ⅱ)設直線與曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在平面直角坐標系中,橢圓C:離心率為,其短軸長為2.
(1)求橢圓C的標準方程;
(2)如圖,A為橢圓C的左頂點,P,Q為橢圓C上兩動點,直線PO交AQ于E,直線QO交AP于D,直線OP與直線OQ的斜率分別為,,且, ,(為非零實數),求的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com