【題目】在數(shù)列{an}中,若a1=1,anan+1=( )n﹣2 , 則滿足不等式 + + +…+ + <2016的正整數(shù)n的最大值為 .
【答案】5
【解析】解:∵anan+1=( )n﹣2 ,
∴an+1an+2=( )n﹣1 .
∴ = = .
∴數(shù)列{an}的奇數(shù)項和偶數(shù)項均組成公比為 的等比數(shù)列.
∵a1=1,a2=4,
∴{ }是以1為首項,以4為公比的等比數(shù)列,
{ }是以 為首項,以4為公比的等比數(shù)列.
∴ .
.
∴ .
∴ <2016,解得4n< ≈1423.1.
∵45=1024,46=4096.
∴n的最大正整數(shù)解為5.
所以答案是5.
【考點精析】關于本題考查的數(shù)列的前n項和,需要了解數(shù)列{an}的前n項和sn與通項an的關系才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的極坐標方程為ρsin(θ+ )= .
(1)在極坐標系下寫出θ=0和θ= 時該直線上的兩點的極坐標,并畫出該直線;
(2)已知Q是曲線ρ=1上的任意一點,求點Q到直線l的最短距離及此時Q的極坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花壇AMPN,要求M在AB的延長線上,N在AD的延長線上,且對角線MN過點C,已知AB=3米,AD=2米,記矩形AMPN的面積為S平方米.
(1)按下列要求建立函數(shù)關系;
(i)設AN=x米,將S表示為x的函數(shù);
(ii)設∠BMC=θ(rad),將S表示為θ的函數(shù).
(2)請你選用(1)中的一個函數(shù)關系,求出S的最小值,并求出S取得最小值時AN的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某人一周5次乘車上班的時間(單位:分鐘)分別為10,11,9,x,11,已知這組數(shù)據(jù)的平均數(shù)為10,那么這組數(shù)據(jù)的方差為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,其左、右焦點分別為,左、右頂點分別為,上、下頂點分別為,四邊形與四邊形的面積之和為4.
(1)求橢圓的方程;
(2)直線與橢圓交于兩點,(其中為坐標原點),求直線被以線段為直徑的圓截得的弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】政府鼓勵創(chuàng)新、創(chuàng)業(yè),銀行給予低息貸款.一位大學畢業(yè)生向自主創(chuàng)業(yè),經(jīng)過市場調研、測算,有兩個方案可供選擇.
方案1:開設一個科技小微企業(yè),需要一次性貸款40萬元,第一年獲利是貸款額的10%,以后每年比上一年增加25%的利潤.
方案2:開設一家食品小店,需要一次性貸款20萬元,第一年獲利是貸款額的15%,以后每年比上一年增加利潤1.5萬元.兩種方案使用期限都是10年,到期一次性還本付息.兩種方案均按年息2%的復利計算(參考數(shù)據(jù):1.259=7.45,1.2510=9.3,1.029=1.20,1.0210=1.22).
(1)10年后,方案1,方案2的總收入分別有多少萬元?
(2)10年后,哪一種方案的利潤較大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017福建三明5月質檢】已知直線與拋物線相切,且與軸的交點為,點.若動點與兩定點所構成三角形的周長為6.
(Ⅰ) 求動點的軌跡的方程;
(Ⅱ) 設斜率為的直線交曲線于兩點,當,且位于直線的兩側時,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓mx2+ny2=1與直線x+y﹣1=0相交于A,B兩點,過AB中點M與坐標原點的直線的斜率為 ,則 的值為( )
A.
B.
C.1
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com