【題目】已知橢圓的離心率為,其左、右焦點分別為,左、右頂點分別為,上、下頂點分別為,四邊形與四邊形的面積之和為4.

(1)求橢圓的方程;

(2)直線與橢圓交于兩點,其中為坐標(biāo)原點,求直線被以線段為直徑的圓截得的弦長.

【答案】(1);(2)

【解析】試題分析:

(1)由題意求得a,b的值可得橢圓的方程為.

(2)聯(lián)立直線與橢圓的方程,結(jié)合題意和圓的弦長公式可得直線被以線段為直徑的圓截得的弦長為.

試題解析:

(1)四邊形的面積為:,

由橢圓的離心率為可得,結(jié)合可得

,則,橢圓的方程為.

(2)由可得,

設(shè)點,,

,

,

可得,即,

,即

整理可得,即

把①代入可得,該不等式恒成立.

為直徑的圓的圓心為,半徑為.

圓心到直線的距離為,

則直線被圓截得的弦長為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=ex(其中e為自然對數(shù)的底數(shù)),gx= x+mm,nR).

1)若Tx=fxgx),m=1,求Tx)在[01]上的最大值;

2)若m=,nN*,求使fx)的圖象恒在gx)圖象上方的最大正整數(shù)n[注意:7e2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1 , 設(shè)AB1的中點為D,B1C∩BC1=E.

求證:
(1)DE∥平面AA1C1C;
(2)BC1⊥AB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的方程為,過點的一條直線與拋物線交于兩點,若拋物線在兩點的切線交于點.

(1)求點的軌跡方程;

(2)設(shè)直線與直線的夾角為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,若a1=1,anan+1=( n2 , 則滿足不等式 + + +…+ + <2016的正整數(shù)n的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個幾何體的三視圖及尺寸如圖所示,則該幾何體的外接球半徑為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

30

40

60

50

70


(1)求回歸直線方程;
(2)試預(yù)測廣告費支出為10萬元時,銷售額多大?
(3)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預(yù)測值與實際值之差的絕對值不超過5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017重慶二診】已知橢圓 的左頂點為,右焦點為,過點且斜率為1的直線交橢圓于另一點,交軸于點,

(1)求橢圓的方程;

(2)過點作直線與橢圓交于兩點,連接為坐標(biāo)原點)并延長交橢圓于點,求面積的最大值及取最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為備戰(zhàn)年瑞典乒乓球世界錦標(biāo)賽,乒乓球隊舉行公開選撥賽,甲、乙、丙三名選手入圍最終單打比賽名單.現(xiàn)甲、乙、丙三人進(jìn)行隊內(nèi)單打?qū)贡荣,每兩人比賽一場,共賽三?/span>,每場比賽勝者得分,負(fù)者得分,在每一場比賽中,甲勝乙的概率為丙勝甲的概率為,乙勝丙的概率為,且各場比賽結(jié)果互不影響.若甲獲第一名且乙獲第三名的概率為.

(Ⅰ)求的值;

(Ⅱ)設(shè)在該次對抗比賽中,丙得分為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案