【題目】如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花壇AMPN,要求M在AB的延長線上,N在AD的延長線上,且對角線MN過點C,已知AB=3米,AD=2米,記矩形AMPN的面積為S平方米.

(1)按下列要求建立函數(shù)關系;
(i)設AN=x米,將S表示為x的函數(shù);
(ii)設∠BMC=θ(rad),將S表示為θ的函數(shù).
(2)請你選用(1)中的一個函數(shù)關系,求出S的最小值,并求出S取得最小值時AN的長度.

【答案】
(1)解:(i)∵Rt△CDN~Rt△MBC,∴ =

,∴BM= ,

由于 ,則AM=

∴S=ANAM= ,(x>2)

(ii)在Rt△MBC中,tanθ= ,∴MB= ,∴AM=3+ ,

在Rt△CDN中,tanθ= ,∴DN=3tanθ,∴AN=2+3tanθ,

∴S=AMAN=(3+ )(2+3tanθ),其中0<θ<


(2)解:選擇(ii)中關系式

∵S=AMAN=(3+ )(2+3tanθ),(0<θ< );

∴S=12+9tanθ+ ≥12+2 =24,

當且僅當9tanθ= ,即tanθ= 時,取等號,此時AN=4

答:當AN的長度為4米時,矩形AMPN的面積最小,最小值為24m2


【解析】(1)求出AN,AM,即可建立函數(shù)關系;(i)設AN=x米,先求出AM的長,即可表示出矩形AMPN的面積;(ii)由∠BMC=θ(rad),可以依次表示出AM與AN的長度,即可表示出S關于θ的函數(shù)表達式;(2)選擇(ii)中的函數(shù)關系式,化簡,由基本不等式即可求出最值.
【考點精析】利用基本不等式在最值問題中的應用對題目進行判斷即可得到答案,需要熟知用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某中學舉行了一次環(huán)保知識競賽活動.為了了解本次競賽學生成績情況,從中抽取了部分學生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進行統(tǒng)計.按照,,,的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在,的數(shù)據(jù)).

(1)求樣本容量n和頻率分布直方圖中x、y的值;

(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取2名同學到市政廣場參加環(huán)保知識宣傳的志愿者活動,求所抽取的2名同學來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)若關于的不等式上恒成立,求的取值范圍;

(2)設函數(shù),若上存在極值,求的取值范圍,并判斷極值的正負.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1 , 設AB1的中點為D,B1C∩BC1=E.

求證:
(1)DE∥平面AA1C1C;
(2)BC1⊥AB1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex+2ax(a為常數(shù))的圖象與y軸交于點A,曲線y=f(x)在點A處的切線斜率為﹣1.
(1)求a的值及函數(shù)f(x)的極值;
(2)證明:當x>0時,x2+1<ex

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的方程為,過點的一條直線與拋物線交于兩點,若拋物線在兩點的切線交于點.

(1)求點的軌跡方程;

(2)設直線與直線的夾角為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列{an}中,若a1=1,anan+1=( n2 , 則滿足不等式 + + +…+ + <2016的正整數(shù)n的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種產品的廣告費支出x與銷售額y(單位:萬元)之間有如下對應數(shù)據(jù):

x

2

4

5

6

8

y

30

40

60

50

70


(1)求回歸直線方程;
(2)試預測廣告費支出為10萬元時,銷售額多大?
(3)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預測值與實際值之差的絕對值不超過5的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017山西三區(qū)八校二!恳阎瘮(shù)(其中, 為常數(shù)且)在處取得極值.

(Ⅰ)當時,求的單調區(qū)間;

(Ⅱ)若上的最大值為1,求的值.

查看答案和解析>>

同步練習冊答案