已知函數(shù)y=a2x+2ax-1(a>0,且a≠1)在區(qū)間[-1,1]上的最大值是7,求a的值.
令t=ax,則t>0
則y=a2x+2ax-1=t2+2t-1=(t+1)2-2(t>0)
當(dāng)0<a<1時(shí),
∵x∈[-1,1],
∴a≤t≤
1
a
,此時(shí)f(t)在[a,
1
a
]上單調(diào)遞增,
則ymax=f(
1
a
)=
1
a2
+
2
a
-1=7,
解得:
1
a
=2,或
1
a
=-4(舍)
∴a=
1
2

當(dāng)a>1時(shí),
∵x∈[-1,1],
1
a
≤t≤a,此時(shí)f(t)在[
1
a
,a]上單調(diào)遞增,
則ymax=f(a)=a2+2a-1=7,
解得:a=2,或a=-4(舍)
∴a=2
綜上:a=
1
2
或a=2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=a2x+2ax-1(a>0且a≠1)在[-1,1]上的最大值是14.
(1)求a的值;
(2)求函數(shù)y=a x2-4的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=a2x+2ax-1(a>1)在區(qū)間[-1,1]上的最大值是14,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)已知函數(shù)y=a2x-4+1(a>0且a≠1)的圖象過(guò)定點(diǎn)A,且點(diǎn)A在直線
x
m
+
y
n
=1(m,n>0)
上,則m+n的最小值為
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=a2x+2ax-1(a>0,且a≠1)在區(qū)間[-1,1]上的最大值是7,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=a2x+2ax-1(a>1)在區(qū)間[-1,1]上的最大值是14,則a的值為_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案