已知函數(shù)的定義域為,部分對應值如下表, 的導函數(shù)的圖象如圖所示.下列關(guān)于的命題:

①函數(shù)的極大值點為,
②函數(shù)上是減函數(shù);
③如果當時,的最大值是2,那么的最大值為4;
④當時,函數(shù)個零點;
⑤函數(shù)的零點個數(shù)可能為0、1、2、3、4個.
其中正確命題的序號是                           
①②⑤.

試題分析:由圖像可知當時,,為增函數(shù);當時,,為減函數(shù);當時,,為增函數(shù);當時,,為減函數(shù),則易知函數(shù)的極大值點為0,4;函數(shù)上是減函數(shù);如果當時,的最大值是2,那么的最大值為5;因為的值不知為多少,所以當時,函數(shù)不一定有個零點;當大小不知時,函數(shù)的零點個數(shù)可能為0、1、2、3、4個.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,某自來水公司要在公路兩側(cè)排水管,公路為東西方向,在路北側(cè)沿直線排水管,在路南側(cè)沿直線排水管(假設(shè)水管與公路的南,北側(cè)在一條直線上且水管的大小看作為一條直線),現(xiàn)要在矩形區(qū)域ABCD內(nèi)沿直線EF將接通.已知AB = 60m,BC = 60m,公路兩側(cè)排管費用為每米1萬元,穿過公路的EF部分的排管費用為每米2萬元,設(shè)EF與AB所成角為.矩形區(qū)域內(nèi)的排管費用為W.

(1)求W關(guān)于的函數(shù)關(guān)系式;
(2)求W的最小值及相應的角

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù),.
(1)當時,函數(shù)處有極小值,求函數(shù)的單調(diào)遞增區(qū)間;
(2)若函數(shù)有相同的極大值,且函數(shù)在區(qū)間上的最大值為,求實數(shù)的值(其中是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù),其中.
(1)若,求的最小值;
(2)如果在定義域內(nèi)既有極大值又有極小值,求實數(shù)的取值范圍;
(3)是否存在最小的正整數(shù),使得當時,不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)f(x)=ln(x+1)-的零點所在的大致區(qū)間是(  )
A.(0,1)B.(1,2)
C.(2,e)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù):
(1)討論函數(shù)的單調(diào)性;
(2)若對于任意的,若函數(shù)在 區(qū)間上有最值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),(其中常數(shù)).
(1)當時,求的極大值;
(2)試討論在區(qū)間上的單調(diào)性;
(3)當時,曲線上總存在相異兩點,使得曲線
在點、處的切線互相平行,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當時,若對任意的恒成立,求實數(shù)的值;
(Ⅲ)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

己知為函數(shù)的導函數(shù),則下列結(jié)論中正確的是(   )
A.,
B.,
C.
D.

查看答案和解析>>

同步練習冊答案