我們把1,4,9,16,25,…這些數(shù)稱做正方形數(shù),這是因?yàn)檫@些數(shù)目的點(diǎn)子可以排成一個(gè)正方形(如圖).試求第n個(gè)正方形數(shù)是( 。
A、n(n-1)
B、n(n+1)
C、n2
D、(n+1)2
考點(diǎn):歸納推理
專題:推理和證明
分析:通過(guò)觀察前幾個(gè)圖形中頂點(diǎn)的個(gè)數(shù)與n的關(guān)系,分析出變化規(guī)律,進(jìn)而可得答案.
解答: 解:當(dāng)n=1時(shí),第n個(gè)正方形數(shù)是1=12
當(dāng)n=2時(shí),第n個(gè)正方形數(shù)是4=22,
當(dāng)n=3時(shí),第n個(gè)正方形數(shù)是9=32
當(dāng)n=4時(shí),第n個(gè)正方形數(shù)是16=42,
當(dāng)n=5時(shí),第n個(gè)正方形數(shù)是25=52,

由此歸納猜想:
第n個(gè)正方形數(shù)是n2,
故選:C
點(diǎn)評(píng):本題主要考查了歸納推理,以及數(shù)列遞推式,屬于基礎(chǔ)題.所謂歸納推理,就是從個(gè)別性知識(shí)推出一般性結(jié)論的推理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是函數(shù)y=Asin(ωx+φ)+b(A>0,ω>0,|φ|<
π
2
)的圖象的一部分,則函數(shù)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式|x+1|(2x-1)≥0的解集是( 。
A、[
1
2
,+∞)
B、(-∞,-1]∪[
1
2
,+∞)
C、{-1}∪[
1
2
,+∞)
D、[-1,-
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

獨(dú)立性檢驗(yàn)中,假設(shè)H0:變量X與變量Y沒(méi)有關(guān)系,則在H0成立的情況下,P(K2≥6.635)≈0.010表示的意義是( 。
A、在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“變量X與變量Y有關(guān)”
B、在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“變量X與變量Y無(wú)關(guān)”
C、有99%以上的把握認(rèn)為“變量X與變量Y無(wú)關(guān)
D、有99%以上的把握認(rèn)為“變量X與變量Y有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(π-α)=-
12
13
,π<α<
2
,則tanα=( 。
A、
5
12
B、-
5
12
C、
12
5
D、-
12
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ex-ax,若f′(0)=2,則a的值為( 。
A、-1B、0C、1D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列三個(gè)函數(shù)的圖象:

它們對(duì)應(yīng)的函數(shù)表達(dá)式分別滿足下列性質(zhì)中的一條:
①f(2x)=2[f(x)]2-1
f(x+y)=
f(x)+f(y)
1-f(x)f(y)

③[f(2x)]2=4[f(x)]2(1-[f(x)]2
則正確的對(duì)應(yīng)方式是(  )
A、(a)-①,(b)-②,(c)-③
B、(b)-①,(c)-②,(a)-③
C、(c)-①,(b)-②,(a)-③
D、(a)-①,(c)-②,(b)-③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f′(x)是f(x)的導(dǎo)函數(shù),f′(x)的圖象如圖所示,則f(x)的圖象只可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

請(qǐng)作出函數(shù)f(x)=xcosx2的圖象,并說(shuō)明具體步驟.

查看答案和解析>>

同步練習(xí)冊(cè)答案