從半徑為r的圓內(nèi)接正方形的4個(gè)頂點(diǎn)及圓心5個(gè)點(diǎn)中任取2個(gè)點(diǎn),則這個(gè)點(diǎn)間的距離小于或等于半徑的概率為(  )
A、
1
5
B、
2
5
C、
3
5
D、
4
5
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:因?yàn)閳A的半徑為r,則從正方形四個(gè)頂點(diǎn)及其中心這5個(gè)點(diǎn)中任取2個(gè)點(diǎn),共有10條線段,4條長度為r,4條長度為2
2
r,兩條長度為2r,即可得出結(jié)論.
解答: 解:因?yàn)閳A的半徑為r,則從正方形四個(gè)頂點(diǎn)及其中心這5個(gè)點(diǎn)中任取2個(gè)點(diǎn),共有10條線段,4條長度為r,4條長度為2
2
r,兩條長度為2r,
∴所求概率為
4
10
=
2
5

故選:B.
點(diǎn)評(píng):本題考查概率的計(jì)算,列舉基本事件是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A、
2
3
3
B、
2
3
3
+2π
C、2
3
D、2
3
+2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓O的半徑為1,P為圓周上一點(diǎn),現(xiàn)將如圖放置的邊長為1的正方形(實(shí)線所示,正方形的頂點(diǎn)A與點(diǎn)P重合)沿圓周逆時(shí)針滾動(dòng),點(diǎn)A第一次回到點(diǎn)P的位置,則點(diǎn)A走過的路徑的長度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
(1)5(2
a
-2
b
)+4(2
b
-3
a

(2)6(
a
-3
b
+
c
)-4(-
a
+
b
-
c

(3)
1
2
[(3
a
-2
b
)+5
a
-
1
3
(6
a
-9
b
)]
(4)(x-y)(
a
+
b
)-(x-y)(
a
-
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx,且f(x+1)為偶函數(shù),定義:滿足f(x)=x的實(shí)數(shù)x稱為函數(shù)f(x)不動(dòng)點(diǎn),若函數(shù)f(x)有且僅有一個(gè)不動(dòng)點(diǎn)
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=f(x)+
k
x
+
1
2
x2在(0,
6
3
]上是單調(diào)減函數(shù),求實(shí)數(shù)k的取值范圍;
(3)在(2)的條件下,討論并求h(x)=x+
k
4x
+1的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+
1
2
ax2+b(a,b∈R).
(Ⅰ)若曲線y=f(x)在x=1處的切線為y=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求證:對(duì)任意給定的正數(shù)m,總存在實(shí)數(shù)a,使函數(shù)f(x)在區(qū)間(m,+∞)上不單調(diào);
(Ⅲ)若點(diǎn)A(x1,y1),B(x2,y2)(x2>x1>0)是曲線f(x)上的兩點(diǎn),試探究:當(dāng)a<0時(shí),是否存在實(shí)數(shù)x0∈(x1,x2),使直線AB的斜率等于f'(x0)?若存在,給予證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)總體分為A、B兩層,用分層抽樣的方法從總體中抽取一個(gè)容量為20的樣本,已知A層中的每個(gè)個(gè)體被抽到的概率都為
1
8
,則總體中的個(gè)體數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a1,a2,…,an是非零實(shí)數(shù),且成等差數(shù)列,求證:
1
a1a2
+
1
a2a3
+
1
a3a4
+…+
1
an-1an
=
n-1
a1an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
a
sinA
=
b
sinB
=
c
sinC
,判斷三角形的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案