【題目】如圖,已知長(zhǎng)方形ABCD中,,MDC的中點(diǎn),將沿AM折起,使得平面平面ABCM

1)求證:平面平面BMD;

2)若點(diǎn)E是線段DB上的一動(dòng)點(diǎn),問為何值時(shí),二面角的余弦值為

【答案】1)證明見解析;(2的值為.

【解析】

1)首先證明線面垂直,利用線面垂直證明面面垂直;

2)建立空間直角坐標(biāo)系,列出各點(diǎn)坐標(biāo),求出平面法向量,根據(jù)面面角的公式以及二面角的余弦值可求出.

1長(zhǎng)方形ABCD中,,,MDC的中點(diǎn),

,

,所以,

平面平面ABCM,平面平面,平面ABCM,

平面ADM

平面BDM,

平面平面BMD

2)建立如圖所示的直角坐標(biāo)系,則平面ADM的一個(gè)法向量,

設(shè),則,

,,

,

,

,

設(shè)平面AME的一個(gè)法向量為,

,即,取,

由題意知,

,

,解得,

故當(dāng)的值為時(shí),二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是衡量空氣污染程度的一個(gè)指標(biāo),為了了解市空氣質(zhì)量情況,從年每天的值的數(shù)據(jù)中隨機(jī)抽取天的數(shù)據(jù),其頻率分布直方圖如圖所示.將值劃分成區(qū)間、、,分別稱為一級(jí)、二級(jí)、三級(jí)和四級(jí),統(tǒng)計(jì)時(shí)用頻率估計(jì)概率 .

(1)根據(jù)年的數(shù)據(jù)估計(jì)該市在年中空氣質(zhì)量為一級(jí)的天數(shù);

(2)如果市對(duì)環(huán)境進(jìn)行治理,經(jīng)治理后,每天近似滿足正態(tài)分布,求經(jīng)過治理后的值的均值下降率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】畫糖是一種以糖為材料在石板上進(jìn)行造型的民間藝術(shù),常見于公園與旅游景點(diǎn).某師傅制作了一種新造型糖畫,為了進(jìn)行合理定價(jià)先進(jìn)性試銷售,其單價(jià)(元)與銷量(個(gè))相關(guān)數(shù)據(jù)如下表:

(1)已知銷量與單價(jià)具有線性相關(guān)關(guān)系,求關(guān)于的線性相關(guān)方程;

(2)若該新造型糖畫每個(gè)的成本為元,要使得進(jìn)入售賣時(shí)利潤(rùn)最大,請(qǐng)利用所求的線性相關(guān)關(guān)系確定單價(jià)應(yīng)該定為多少元?(結(jié)果保留到整數(shù))

參考公式:線性回歸方程中斜率和截距最小二乘法估計(jì)計(jì)算公式:

.參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)古代數(shù)學(xué)經(jīng)典《九章算術(shù)》系統(tǒng)地總結(jié)了戰(zhàn)國(guó)、秦、漢時(shí)期的數(shù)學(xué)成就,書中將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個(gè)面都為直角三角形的三棱錐稱之為鱉臑,如圖為一個(gè)陽馬與一個(gè)鱉臑的組合體,已知平面,四邊形為正方形,,若鱉臑的外接球的體積為,則陽馬的外接球的表面積等于______。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:在桌面上,用母球擊打目標(biāo)球,使目標(biāo)球運(yùn)動(dòng),球的位置是指球心的位置,我們說球是指該球的球心點(diǎn).兩球碰撞后,目標(biāo)球在兩球的球心所確定的直線上運(yùn)動(dòng),目標(biāo)球的運(yùn)動(dòng)方向是指目標(biāo)球被母球擊打時(shí),母球球心所指向目標(biāo)球球心的方向.所有的球都簡(jiǎn)化為平面上半徑為1的圓,且母球與目標(biāo)球有公共點(diǎn)時(shí),目標(biāo)球就開始運(yùn)動(dòng),在桌面上建立平面直角坐標(biāo)系,解決下列問題:

1)如圖,設(shè)母球的位置為,目標(biāo)球的位置為,要使目標(biāo)球處運(yùn)動(dòng),求母球球心運(yùn)動(dòng)的直線方程;

2)如圖,若母球的位置為,目標(biāo)球的位置為,能否讓母球擊打目標(biāo)球后,使目標(biāo)球向處運(yùn)動(dòng)?

3)若的位置為時(shí),使得母球擊打目標(biāo)球時(shí),目標(biāo)球運(yùn)動(dòng)方向可以碰到目標(biāo)球,求的最小值(只需要寫出結(jié)果即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓與雙曲線的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠的,,三個(gè)不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進(jìn)行檢測(cè):

車間

數(shù)量

50

150

100

(1)求這6件樣品中來自,,各車間產(chǎn)品的數(shù)量;

(2)若在這6件樣品中隨機(jī)抽取2件進(jìn)行進(jìn)一步檢測(cè),求這2件產(chǎn)品來自相同車間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】籃球運(yùn)動(dòng)于1891年起源于美國(guó),它是由美國(guó)馬薩諸塞州斯普林菲爾德(舊譯麻省春田)市基督教青年會(huì)()訓(xùn)練學(xué)校的體育教師詹姆士·奈史密斯博士()發(fā)明.它是以投籃、上籃和扣籃為中心的對(duì)抗性體育運(yùn)動(dòng)之一,是可以增強(qiáng)體質(zhì)的一種運(yùn)動(dòng).已知籃球的比賽中,得分規(guī)則如下:3分線外側(cè)投入可得3分,3分線內(nèi)側(cè)投入可得2分,不進(jìn)得0分.經(jīng)過多次試驗(yàn),某人投籃100次,有20個(gè)是3分線外側(cè)投入,30個(gè)是3分線內(nèi)側(cè)投入,其余不能入籃,且每次投籃為相互獨(dú)立事件.

(1)求該人在4次投籃中恰有三次是3分線外側(cè)投入的概率;

(2)求該人在4次投籃中至少有一次是3分線外側(cè)投入的概率;

(3)求該人兩次投籃后得分的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),

(1)求的單調(diào)區(qū)間;

(2)討論零點(diǎn)的個(gè)數(shù);

(3)當(dāng)時(shí),設(shè)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案