設(shè)函數(shù)f(x)=數(shù)學(xué)公式+xlnx (a≥1),g(x)=x3-x2-3.(1)求函數(shù)g(x)=x3-x2-3的單調(diào)區(qū)間;
(2)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M,求滿足上述條件的最大整數(shù)M;
(3)求證:對任意的s,t∈[1,2],都有f(s)≥g(t)成立.

解:(1)考察g(x)=x3-x2-3,則g'(x)=3x(x-
由g′(x)>0得或x<0,由g′(x)<0得,
故答案為:增區(qū)間為,減區(qū)間為(0,).
(2)存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,
等價于:[g(x1)-g(x2)]max≥M
由題(1)可知:當(dāng)x∈[0,2]時,,
g(x)max=g(2)=1
,
所以滿足條件的最大整數(shù)M=4
故答案為4.
(3)對任意的s,t∈[1,2],都有f(s)>g(t)成立
等價于:在區(qū)間[1,2]上,函數(shù)f(x)的最小值不小于g(x)的最大值
由(2)知,在區(qū)間[1,2]上,g(x)的最大值為
下證當(dāng)a≥1時,在區(qū)間[1,2]上,f(x)≥1恒成立.
當(dāng)a≥1且x∈[1,2]時,f(x)=
記h(x)=,h'(x)=
當(dāng)x∈[1,2]時,h'(x)≥0.所以函數(shù)h(x)在區(qū)間[1,2]上單調(diào)遞增,h(x)min=h(1)=1,得h(x)≥1
所以當(dāng)a≥1且x∈[1,2]時f(x)≥1成立.
故對任意的s,t∈[1,2],都有f(s)≥g(t)成立.
分析:第一問屬于常規(guī)問題,只是要注意求單調(diào)區(qū)間要先求定義域.第二問關(guān)鍵要分析出如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M等價為[g(x1)-g(x2)]max≥M即轉(zhuǎn)化為求最大最小值問題.第三問關(guān)鍵要分析出對任意的s,t∈[1,2],都有f(s)≥g(t)成立等價為f(x)min≥f(x)max
點評:此題綜合性較強(qiáng),三小問層層推進(jìn)環(huán)環(huán)相扣.其中第三問較難,要構(gòu)造函數(shù),然后利用導(dǎo)數(shù)判斷單調(diào)性進(jìn)而求最值!
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域為A,若存在非零實數(shù)t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調(diào)函數(shù).如果定義域為[0,+∞)的函數(shù)f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調(diào)函數(shù),那么實數(shù)m的取值范圍是( 。
A、[-5,5]
B、[-
5
,
5
]
C、[-
10
,
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當(dāng)x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標(biāo)由小到大構(gòu)成一個無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案