【題目】已知平面內(nèi)一動點 到點 的距離與點 到 x 軸的距離的差等于1.
(1)求動點 的軌跡 的方程;
(2)過點 作兩條斜率存在且互相垂直的直線 ,設(shè) 與軌跡 相交于點 , 與軌跡 相交于點 ,求 的最小值.
【答案】
(1)解:設(shè)動點 的坐標(biāo)為 ,由題意得
化簡得 當(dāng) 時 ;當(dāng) 時x=0
所以動點P的軌跡 的方程為 和X=0( )
(2)解:由題意知,直線 的斜率存在且不為0,設(shè)為 ,則 的方程為 .
由
設(shè) 則
,
因為 ,所以 的斜率為 .設(shè) ,則同理可得 ,
當(dāng)且僅當(dāng) 即 時, 取最小值16
【解析】(1)直接設(shè)點P的坐標(biāo),根據(jù)條件設(shè)出方程,解出方程即可。
(2)由題意設(shè)出兩直線方程,分別聯(lián)立曲線C,根據(jù)韋達(dá)定理得到坐標(biāo)間的關(guān)系,然后直接求兩向量的數(shù)量積,在求最值時運用均值不等式即可。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是∠A,∠B,∠C的對邊,已知a=c.
(1)若∠A=2∠B,求cosB;
(2)若AC=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱錐 中, 為頂點 在底面的射影, 為側(cè)棱 的中點,且 ,則直線 與平面 所成的角是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】喬經(jīng)理到老陳的果園里一次性采購一種水果,他倆商定:喬經(jīng)理的采購價(元/噸)與采購量(噸)之間函數(shù)關(guān)系的圖像如圖中的折線段所示(不包含端點但包含端點).
(1)求與之間的函數(shù)關(guān)系式;
(2)已知老陳種植水果的成本是2800元/噸,那么喬經(jīng)理的采購量為多少時,老陳在這次買賣中所獲的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) 為等比數(shù)列, 為等差數(shù)列,且 = = ,若 是1,1,2,…,求
(1)數(shù)列 的通項公式
(2)數(shù)列 的前10項的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.如果平面 平面 ,則 內(nèi)任意一條直線必垂直于
B.若直線 不平行于平面 ,則 內(nèi)不存在直線平行于直線
C.如果平面 不垂直于平面 ,那么平面 內(nèi)一定不存在直線垂直于平面
D.若直線 不垂直于平面 ,則 內(nèi)不存在直線垂直于直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐 中, 底面 分別是 的中點, 在 ,且 .
(1)求證: 平面 ;
(2)在線段 上是否存在點 ,使二面角 的大小為 ?若存在,求出 的長;
若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C: ,點 在x軸的正半軸上,過點M的直線 與拋物線C相交于A,B兩點,O為坐標(biāo)原點.
(1)若 ,且直線 的斜率為1,求以AB為直徑的圓的方程;
(2)是否存在定點M,使得不論直線 繞點M如何轉(zhuǎn)動, 恒為定值?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com