直線ly=kx+1與雙曲線C2x2-y2=1的右支交于不同的兩點(diǎn)AB

1)求實(shí)數(shù)k的取值范圍;

2)是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過雙曲線C的右焦點(diǎn)F?若存在,求出k的值;若不存在,說明理由.

答案:
解析:

本小題主要考查直線、雙曲線的方程和性質(zhì),曲線與方程的關(guān)系,及其綜合應(yīng)用能力.

解:(1)將直線l的方程y=kx+1代入雙曲線C的方程2x2-y2=1后,整理得

(k2-2)x2+2kx+2=0        

依題意,直線l與雙曲線C的右支交于不同兩點(diǎn),故

解得k的取值范圍是-2<k<

2)設(shè)A、B兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),則由①式得

        

假設(shè)存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過雙曲線C的右焦點(diǎn)F(c,0).則由FA^FB(x1-c)(x2-c)+y1y2=0

(x1-c)(x2-c)+(kx1+1)(kx2+2)=0

整理得    (k2+1)x1x2+(k-c)(x1+x2)+c2+1=0.③

把②式及c=代入③式化簡(jiǎn)得

5k2+-6=0

解得k=k=Ï(-2,)(舍去).

可知k=使得以AB為直徑的圓經(jīng)過雙曲線C的右焦點(diǎn).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)F1(-
2
,0),F2(
2
,0)
,動(dòng)點(diǎn)P滿足條件:|
PF2
|-|
PF1
|=2
,點(diǎn)P的軌跡是曲線E,直線l:y=kx-1與曲線E交于A、B兩點(diǎn).如果|AB|=6
3

(Ⅰ)求直線l的方程;
(Ⅱ)若曲線E上存在點(diǎn)C,使
OA
+
OB
=m
OC
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

21、已知圓C:x2+y2-4x+2y+1=0,直線l:y=kx-1.
(1)當(dāng)k為何值時(shí)直線l過圓心;
(2)是否存在直線l與圓C交于A,B兩點(diǎn),且△ABC的面積為2?如果存在,求出直線l的方程,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,橢圓C上任意一點(diǎn)到橢圓兩焦點(diǎn)的距離和為6.求橢圓C的方程;
(2)直線l:y=kx+1與雙曲線C:2x2-y2=1的右支交于不同的兩點(diǎn)A、B.求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•東城區(qū)二模)在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)P到定點(diǎn)F(0,
1
4
)
的距離比點(diǎn)P到x軸的距離大
1
4
,設(shè)動(dòng)點(diǎn)P的軌跡為曲線C,直線l:y=kx+1交曲線C于A,B兩點(diǎn),M是線段AB的中點(diǎn),過點(diǎn)M作x軸的垂線交曲線C于點(diǎn)N.
(Ⅰ)求曲線C的方程;
(Ⅱ)證明:曲線C在點(diǎn)N處的切線與AB平行;
(Ⅲ)若曲線C上存在關(guān)于直線l對(duì)稱的兩點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:y=kx+1與雙曲線c:3x2-y2=1相交于A、B兩點(diǎn).
(1)若以AB為直徑的圓過原點(diǎn),求直線l的方程;
(2)若A、B兩點(diǎn)在雙曲線的右支上,求直線l的傾斜角的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案