已知曲線C:y=4x,Cn:4x+n(n∈N*),從C上的點Qn(xn,yn)作x軸的垂線,交Cn于點Pn,再從點Pn作y軸的垂線,交C于點Qn+1(xn+1,yn+1),設x1=1,an=xn+1-xn

(1)求數(shù)列{xn}的通項公式;

(2)記,數(shù)列{cn}的前n項和為Tn,求證:;

(3)若已知,記數(shù)列{an}的前n項和為An,數(shù)列{dn}的前n項和為Bn,試比較An的大小.

答案:
解析:

  解:(1)依題意點的坐標為,

  

  

  (2),

  所以:(5分)

  時,,

  ,

  (當時取“”).(8分)

  (3),

  由

  知

  ,而,所以可得

  于是

  

   10分

  當;

  當時,

  當時,

  下面證明:當時,

  證法一:(利用組合恒等式放縮)

  當時,

  

  ∴當時, 13分

  證法二:(數(shù)學歸納法)證明略

  證法三:(函數(shù)法)

  ∵時,

  構造函數(shù),

  

  ∴當時,

  ∴在區(qū)間是減函數(shù),

  ∴當時,

  

  ∴

  在區(qū)間是減函數(shù),

  ∴當時,

  

  從而時,,

  即

  ∴當時,


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:山東濟寧梁山二中2011-2012學年高二12月月考數(shù)學理科試題 題型:044

已知M(4,0),N(1,0),若動點P滿足,P點的軌跡為曲線C.

(Ⅰ)求曲線C的方程;

(Ⅱ)試確定m的取值范圍,使得對于直線l:y=4x+m,曲線C上總有不同的兩點關于直線l對稱.

查看答案和解析>>

科目:高中數(shù)學 來源:101網(wǎng)校同步練習 高二數(shù)學 蘇教版(新課標·2004年初審) 蘇教版 題型:044

已知曲線y=-x2=4x上有兩點A(4,0)、B(2,4).

(1)求割線AB的斜率kAB及直線AB的方程;

(2)在曲線上是否存在點C,使過C點的切線與直線AB平行?如果存在,求出點C的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:福建省南安一中2012屆高三上學期期中考試數(shù)學文科試題 題型:022

已知曲線Cy=lnx-4x與直線x=1交于一點P,那么曲線C在點P處的切線方程是_______

查看答案和解析>>

科目:高中數(shù)學 來源:2013年全國普通高等學校招生統(tǒng)一考試理科數(shù)學(新課標1卷解析版) 題型:解答題

(本小題滿分共12分)已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d),若曲線y=f(x)和曲線y=g(x)都過點P(0,2),且在點P處有相同的切線y=4x+2

(Ⅰ)求a,b,c,d的值

(Ⅱ)若x≥-2時,f(x)≤kg(x),求k的取值范圍。

 

查看答案和解析>>

同步練習冊答案