【題目】某公司一年需購(gòu)買某種原料400噸,設(shè)公司每次都購(gòu)買噸,每次運(yùn)費(fèi)為4萬(wàn)元,一年的總存儲(chǔ)費(fèi)用為萬(wàn)元.

1)要使一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最小,則每次購(gòu)買多少噸?

2)要使一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和不超過200萬(wàn)元,則每次購(gòu)買量在什么范圍?

【答案】1)每次購(gòu)買20噸時(shí),一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最;(2)每次購(gòu)買量在大于或等于10噸且小于或等于40噸的范圍內(nèi)

【解析】

1)先設(shè)某公司每次都購(gòu)買噸,由于一年購(gòu)買某種貨物400噸,得出需要購(gòu)買的次數(shù),從而求得一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和,最后利用基本不等式求得一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最小即可.
2)根據(jù)一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和不超過200萬(wàn)元,可建立不等式,從而可求次購(gòu)買量的范圍

解:某公司一年購(gòu)買某種貨物400噸,每次都購(gòu)買噸,則需要購(gòu)買次,運(yùn)費(fèi)為4萬(wàn)元/次,一年的總存儲(chǔ)費(fèi)用為4萬(wàn)元,一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和為萬(wàn)元.
1,當(dāng)噸時(shí),等號(hào)成立.
∴每次購(gòu)買20噸時(shí),一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最小;
2)由,得
∴每次購(gòu)買量在大于或等于10噸且小于或等于40噸的范圍內(nèi).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=fx)是定義域?yàn)?/span>R的偶函數(shù).當(dāng)x≥0時(shí),,若關(guān)于x的方程[fx]2+afx+b=0a,bR有且僅有6個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的函數(shù)且不恒為零,對(duì)滿足,且上單調(diào)遞增.

1)求,的值,并判斷函數(shù)的奇偶性;

2)求的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,橢圓C離心率為,其短軸長(zhǎng)為2.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)如圖,A為橢圓C的左頂點(diǎn),P,Q為橢圓C上兩動(dòng)點(diǎn),直線POAQE,直線QOAPD,直線OP與直線OQ的斜率分別為,,且, 為非零實(shí)數(shù)),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),

①若曲線與直線相切,求的值;

②若曲線與直線有公共點(diǎn),求的取值范圍.

(2)當(dāng)時(shí),不等式對(duì)于任意正實(shí)數(shù)恒成立,當(dāng)取得最大值時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程

1)若方程有兩個(gè)正根,求:m的取值范圍;

2)若方程有兩個(gè)正根,且一個(gè)比2大,一個(gè)比2小,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,坐標(biāo)原點(diǎn)為.橢圓的動(dòng)弦過右焦點(diǎn)且不垂直于坐標(biāo)軸,的中點(diǎn)為,過且垂直于線段的直線交射線于點(diǎn).

(I)求點(diǎn)的橫坐標(biāo);

(II)當(dāng)最大時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三國(guó)時(shí)期趙爽在《勾股方圓圖注》中,對(duì)勾股定理的證明可用現(xiàn)代數(shù)學(xué)表述為如圖所示,我們教材中利用該圖作為幾何解釋的是(

A.如果,那么

B.如果,那么

C.如果,那么

D.對(duì)任意實(shí)數(shù),有,當(dāng)且僅當(dāng)時(shí),等號(hào)成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年滕州某企業(yè)計(jì)劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場(chǎng)分析,全年需投入固定成本2500萬(wàn)元.每生產(chǎn)(百輛)新能源汽車,需另投入成本萬(wàn)元,且.由市場(chǎng)調(diào)研知,每輛車售價(jià)5萬(wàn)元,且生產(chǎn)的車輛當(dāng)年能全部銷售完.

1)求出2019年的利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷售-成本)

22019年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案