【題目】已知圓,圓,動(dòng)圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)不經(jīng)過(guò)點(diǎn)的直線l與曲線C相交于A,B兩點(diǎn),直線QA與直線QB的斜率均存在且斜率之和為-2,證明:直線l過(guò)定點(diǎn).
【答案】(1);(2)證明見(jiàn)解析.
【解析】
(1)根據(jù)動(dòng)圓P與圓M外切并且與圓N內(nèi)切,得到,,從而得到,得到,從而求出橢圓的標(biāo)準(zhǔn)方程;(2)直線l斜率存在時(shí),設(shè),代入橢圓方程,得到,,表示出直線QA與直線QB的斜率,根據(jù),得到,的關(guān)系,得到直線所過(guò)的定點(diǎn),再驗(yàn)證直線l斜率不存在時(shí),也過(guò)該定點(diǎn),從而證明直線過(guò)定點(diǎn).
(1)設(shè)動(dòng)圓P的半徑為r,
因?yàn)閯?dòng)圓P與圓M外切,所以,
因?yàn)閯?dòng)圓P與圓N內(nèi)切,所以,
則,
由橢圓定義可知,曲線C是以為左、右焦點(diǎn),長(zhǎng)軸長(zhǎng)為8的橢圓,
設(shè)橢圓方程為,
則,,故,
所以曲線C的方程為.
(2)①當(dāng)直線l斜率存在時(shí),設(shè)直線,,
聯(lián)立,
得,
設(shè)點(diǎn),則,
,
所以,
即,
得.
則,
因?yàn)?/span>,所以.
即,
直線,
所以直線l過(guò)定點(diǎn).
②當(dāng)直線l斜率不存在時(shí),設(shè)直線,且,
則點(diǎn)
,
解得,
所以直線也過(guò)定點(diǎn).
綜上所述,直線l過(guò)定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某條公共汽車線路收支差額與乘客量的函數(shù)關(guān)系如下圖所示(收支差額=車票收入-支出費(fèi)用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(1)不改變車票價(jià)格,減少支出費(fèi)用;建議(2)不改變支出費(fèi)用,提高車票價(jià)格.下面給出的四個(gè)圖形中,實(shí)線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則( )
A.①反映建議(2),③反映建議(1)B.①反映建議(1),③反映建議(2)
C.②反映建議(1),④反映建議(2)D.④反映建議(1),②反映建議(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,為其焦點(diǎn),為其準(zhǔn)線,過(guò)任作一條直線交拋物線于兩點(diǎn),、分別為、在上的射影,為的中點(diǎn),給出下列命題:
(1);(2);(3);
(4)與的交點(diǎn)的軸上;(5)與交于原點(diǎn).
其中真命題的序號(hào)為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為信號(hào)源點(diǎn),、、是三個(gè)居民區(qū),已知、都在的正東方向上,,,在的北偏西45°方向上,,現(xiàn)要經(jīng)過(guò)點(diǎn)鋪設(shè)一條總光纜直線(在直線的上方),并從、、分別鋪設(shè)三條最短分支光纜連接到總光纜,假設(shè)鋪設(shè)每條分支光纜的費(fèi)用與其長(zhǎng)度的平方成正比,比例系數(shù)為1元/,設(shè),(),鋪設(shè)三條分支光纜的總費(fèi)用為(元).
(1)求關(guān)于的函數(shù)表達(dá)式;
(2)求的最小值及此時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱錐D-ABC中,,E,F分別為DB,AB的中點(diǎn),且.
(1)求證:平面平面ABC;
(2)求二面角D-CE-F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)討論函數(shù)的極值,并說(shuō)明理由;
(Ⅲ)若有兩個(gè)極值點(diǎn),,求證:函數(shù)有三個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是由兩個(gè)全等的菱形和組成的空間圖形,,∠BAF=∠ECD=60°.
(1)求證:;
(2)如果二面角B-EF-D的平面角為60°,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢問(wèn)某地100名高中學(xué)生在選擇座位時(shí)是否挑同桌,得到如下列聯(lián)表:
男生 | 女生 | 合計(jì) | |
挑同桌 | 30 | 40 | 70 |
不挑同桌 | 20 | 10 | 30 |
總計(jì) | 50 | 50 | 100 |
Ⅰ從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個(gè)容量為5的樣本,現(xiàn)從這5人中隨機(jī)選取3人做深度采訪,求這3名學(xué)生中至少有2名要挑同桌的概率;
Ⅱ根據(jù)以上列聯(lián)表,是否有以上的把握認(rèn)為“性別與在選擇座位時(shí)是否挑同桌”有關(guān)?
下面的臨界值表供參考:
參考公式: ,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,有一個(gè)長(zhǎng)方體形狀的敞口玻璃容器,底面是邊長(zhǎng)為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖②),且傾斜時(shí)底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).
(1)要使傾斜后容器內(nèi)的溶液不會(huì)溢出,角的最大值是多少?
(2)現(xiàn)需要倒出不少于的溶液,當(dāng)時(shí),能實(shí)現(xiàn)要求嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com