【題目】如圖,有一個(gè)長(zhǎng)方體形狀的敞口玻璃容器,底面是邊長(zhǎng)為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖),且傾斜時(shí)底面的一條棱始終在桌面上(圖、均為容器的縱截面).

1)要使傾斜后容器內(nèi)的溶液不會(huì)溢出,角的最大值是多少?

2)現(xiàn)需要倒出不少于的溶液,當(dāng)時(shí),能實(shí)現(xiàn)要求嗎?請(qǐng)說明理由.

【答案】1)要使傾斜后容器內(nèi)的溶液不會(huì)溢出,的最大值是45°(2)不能實(shí)現(xiàn)要求,詳見解析

【解析】

1)當(dāng)傾斜至上液面經(jīng)過點(diǎn)B時(shí),容器內(nèi)溶液恰好不會(huì)溢出,此時(shí)最大.

2)當(dāng)時(shí),設(shè)剩余的液面為,比較60°的大小后發(fā)現(xiàn)上,計(jì)算此時(shí)倒出的液體體積,比小,從而得出結(jié)論.

1)如圖,當(dāng)傾斜至上液面經(jīng)過點(diǎn)B時(shí),容器內(nèi)溶液恰好不會(huì)溢出,此時(shí)最大.

解法一:此時(shí),梯形的面積等于

因?yàn)?/span>,所以,

,解得

所以,要使傾斜后容器內(nèi)的溶液不會(huì)溢出,的最大值是45°

     、

解法二:此時(shí),的面積等于圖中沒有液體部分的面積,即,

因?yàn)?/span>,所以

,即,

解得,

所以,要使傾斜后容器內(nèi)的溶液不會(huì)溢出,的最大值是45°

2)如圖,當(dāng)時(shí),設(shè)上液面為,因?yàn)?/span>,所以點(diǎn)F在線段上,

       ④

此時(shí),,

剩余溶液的體積為,

由題意,原來溶液的體積為,

因?yàn)?/span>,所以倒出的溶液不滿

所以,要倒出不少于的溶液,當(dāng)時(shí),不能實(shí)現(xiàn)要求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓,動(dòng)圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.

1)求曲線C的方程;

2)設(shè)不經(jīng)過點(diǎn)的直線l與曲線C相交于A,B兩點(diǎn),直線QA與直線QB的斜率均存在且斜率之和為-2,證明:直線l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】棋盤上標(biāo)有第、、站,棋子開始位于第站,棋手拋擲均勻硬幣走跳棋游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到調(diào)到第站或第站時(shí),游戲結(jié)束.設(shè)棋子位于第站的概率為.

1)當(dāng)游戲開始時(shí),若拋擲均勻硬幣次后,求棋手所走步數(shù)之和的分布列與數(shù)學(xué)期望;

2)證明:;

3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一些數(shù)學(xué)用語,塹堵意指底面為直角三角形,且側(cè)棱垂直于底面的三棱柱,而陽馬指底面為矩形,且有一側(cè)棱垂直于底面的四棱錐.現(xiàn)有一如圖所示的塹堵,,若,當(dāng)陽馬體積最大時(shí),則塹堵的外接球體積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個(gè)長(zhǎng)方體形狀的敞口玻璃容器,底面是邊長(zhǎng)為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖),且傾斜時(shí)底面的一條棱始終在桌面上(圖、均為容器的縱截面).

1)要使傾斜后容器內(nèi)的溶液不會(huì)溢出,角的最大值是多少?

2)現(xiàn)需要倒出不少于的溶液,當(dāng)時(shí),能實(shí)現(xiàn)要求嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)a>0a≠1)是奇函數(shù).

1)求常數(shù)k的值;

2)若已知f1=,且函數(shù)在區(qū)間[1,+∞])上的最小值為—2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定圓,動(dòng)圓過點(diǎn)且與圓相切,記圓心的軌跡為.

1)求軌跡的方程;

2)設(shè)點(diǎn)上運(yùn)動(dòng),關(guān)于原點(diǎn)對(duì)稱,且,當(dāng)的面積最小時(shí), 求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且滿足.

1)求拋物線的方程;

2)過拋物線上的任意一點(diǎn)作拋物線的切線,交拋物線的準(zhǔn)線于點(diǎn).軸上是否存在一個(gè)定點(diǎn),使以為直徑的圓恒過.若存在,求出的坐標(biāo),若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是(

A.若隨機(jī)變量服從正態(tài)分布,則

B.已知直線平面,直線平面,則“”是“”的充分不必要條件;

C.若隨機(jī)變量服從二項(xiàng)分布:,;

D.的充分不必要條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案