【題目】已知函數(shù),

)若上的最大值為,求實(shí)數(shù)b的值;

)若對(duì)任意x∈[1,e],都有恒成立,求實(shí)數(shù)a的取值范圍;

)在()的條件下,設(shè),對(duì)任意給定的正實(shí)數(shù)a,曲線y=Fx)上是否存在兩點(diǎn)P、Q,使得△POQ是以OO為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?請(qǐng)說明理由.

【答案】)存在

【解析】

試題(1)解決類似的問題時(shí),注意區(qū)分函數(shù)的最值和極值.知道函數(shù)的最值時(shí),要先求函數(shù)在區(qū)間內(nèi)使的點(diǎn),再計(jì)算函數(shù)在區(qū)間內(nèi)所有使的點(diǎn)和區(qū)間端點(diǎn)處的函數(shù)值,最后比較即得;(2)對(duì)于恒成立的問題,常用到以下兩個(gè)結(jié)論:(1,(2;(3)對(duì)于是否存在問題先假設(shè)存在,如推出矛盾則不存在,若不矛盾則存在

試題解析:()解:由,得得f′x=-3x2+2x=-x3x-2),令f′x=0,得x=0

當(dāng)x變化時(shí)()若上的最大值為,求實(shí)數(shù)b的值列表如下:

x



0







f′x


-

0

+

0

-

fx



單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

即最大值為

2)由,得

且等號(hào)不能同時(shí)取得,,即

恒成立,即

,則

當(dāng),從而

上為增函數(shù),

3)由條件

假設(shè)曲線y=Fx)上是否存在兩點(diǎn)PQ滿足題意,則P,Q只能在y軸的兩側(cè),不妨設(shè)是以是坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,是否存在等價(jià)于該方程t>0是否有根

當(dāng)時(shí),方程可化為化簡(jiǎn)得此方程無解;

時(shí),方程設(shè),顯然,當(dāng)時(shí),即上是增函數(shù),值域是,即,所以當(dāng)時(shí)方程總有解,即對(duì)于任意正實(shí)數(shù)a曲線y=Fx)上總存在兩點(diǎn)P、Q,使得△POQ是以OO為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是正方形,側(cè)棱底面,的中點(diǎn).

(1)證明:平面

(2)求二面角的余弦值;

(3)若點(diǎn)在線段(不包含端點(diǎn))上,且直線平面,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)對(duì)定義域內(nèi)的每一個(gè)值,在其定義域內(nèi)都存在唯一的,使成立,則稱該函數(shù)為“依賴函數(shù)”.

(1)判斷函數(shù)是否為“依賴函數(shù)”,并說明理由;

(2)若函數(shù)在定義域上為“依賴函數(shù)”,求的取值范圍;

(3)已知函數(shù)在定義域上為“依賴函數(shù)”.若存在實(shí)數(shù),使得對(duì)任意的,不等式都成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心的坐標(biāo)為,且圓與直線相切,過點(diǎn)的動(dòng)直線與圓相交于,兩點(diǎn),直線與直線的交點(diǎn)為.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)求的最小值;

(3)問:是否是定值?若是,求出這個(gè)定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年以來精準(zhǔn)扶貧政策的落實(shí),使我國扶貧工作有了新進(jìn)展,貧困發(fā)生率由年底的下降到年底的,創(chuàng)造了人類減貧史上的的中國奇跡.“貧困發(fā)生率”是指低于貧困線的人口占全體人口的比例,年至年我國貧困發(fā)生率的數(shù)據(jù)如下表:

年份

2012

2013

2014

2015

2016

2017

2018

貧困發(fā)生率

10.2

8.5

7.2

5.7

4.5

3.1

1.4

(1)從表中所給的個(gè)貧困發(fā)生率數(shù)據(jù)中任選兩個(gè),求兩個(gè)都低于的概率;

(2)設(shè)年份代碼,利用線性回歸方程,分析年至年貧困發(fā)生率與年份代碼的相關(guān)情況,并預(yù)測(cè)年貧困發(fā)生率.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:

(的值保留到小數(shù)點(diǎn)后三位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列結(jié)論:

為真為真的充分不必要條件:②為假為真的充分不必要條件;③為真為假的必要不充分條件;④為真為假的必要不充分條件.

其中,正確的結(jié)論是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題;命題函數(shù)在區(qū)間上有零點(diǎn).

1)當(dāng)時(shí),若為真命題,求實(shí)數(shù)的取值范圍;

2)若命題是命題的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某“雙一流”大學(xué)專業(yè)獎(jiǎng)學(xué)金是以所學(xué)專業(yè)各科考試成績(jī)作為評(píng)選依據(jù),分為專業(yè)一等獎(jiǎng)學(xué)金、專業(yè)二等獎(jiǎng)學(xué)金及專業(yè)三等獎(jiǎng)學(xué)金,且專業(yè)獎(jiǎng)學(xué)金每個(gè)學(xué)生一年最多只能獲得一次.圖(1)是統(tǒng)計(jì)了該校名學(xué)生周課外平均學(xué)習(xí)時(shí)間頻率分布直方圖,圖(2)是這名學(xué)生在年周課外平均學(xué)習(xí)時(shí)間段獲得專業(yè)獎(jiǎng)學(xué)金的頻率柱狀圖.

(Ⅰ)求這名學(xué)生中獲得專業(yè)三等獎(jiǎng)學(xué)金的人數(shù);

(Ⅱ)若周課外平均學(xué)習(xí)時(shí)間超過小時(shí)稱為“努力型”學(xué)生,否則稱為“非努力型”學(xué)生,列聯(lián)表并判斷是否有的把握認(rèn)為該校學(xué)生獲得專業(yè)一、二等獎(jiǎng)學(xué)金與是否是“努力型”學(xué)生有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)分別是橢圈的左、右焦點(diǎn),是橢圓上第二象限內(nèi)的一點(diǎn)且軸垂直,直線與橢圓的另一個(gè)交點(diǎn)為.

1)若直線的斜率為,求橢圓的離心率;

2)若直線軸的交點(diǎn)為,且.

查看答案和解析>>

同步練習(xí)冊(cè)答案