【題目】如圖,在四棱錐中,已知平面平面,且,為等邊三角形,,.與平面所成角的正弦值為.

1)證明:平面;

2)若的中點,求二面角的余弦值.

【答案】1)證明見詳解;(2

【解析】

1)根據(jù)題意求出,從而可得,進(jìn)而可得,利用線面平行的判定定理即可證出.

2)設(shè)的中點為,連接,則,分別以軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值.

1)平面平面,且,則平面

所以,因為,,為等邊三角形,

所以,

,,且,

所以平面,所以,

所以與平面所成角,

中,,

,

所以,

解得,

中,可得,

所以,所以,

又因為平面,平面,

所以平面.

2)設(shè)的中點為,連接,則,

由(1)知

分別以軸,建立空間直角坐標(biāo)系

,,,,

,

設(shè)平面的法向量為

,令,

設(shè)平面的法向量為

,令,

設(shè)二面角的平面角為,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線方程為.以極點為原點,極軸為軸正半軸建立直角坐標(biāo)系,直線,(t為參數(shù),).

(1)求曲線的直角坐標(biāo)方程;

(2)設(shè)直線與曲線相交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:

①直線與直線的斜率乘積為;

軸;

③以為直徑的圓與拋物線準(zhǔn)線相切.

其中,所有正確判斷的序號是(

A.①②③B.①②C.①③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從高三年級期末考試的學(xué)生中抽出60名學(xué)生,其成績(均為整數(shù))的頻率分布直方圖如圖所示:

1)估計這次考試的及格率(60分及以上為及格)和平均分;

2)按分層抽樣從成績是80分以上(包括80分)的學(xué)生中選取6人,再從這6人中選取兩人作為代表參加交流活動,求他們在不同分?jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某企業(yè)生產(chǎn)某種產(chǎn)品的年固定成本為萬元,且每生產(chǎn)噸該產(chǎn)品需另投入萬元,現(xiàn)假設(shè)該企業(yè)在一年內(nèi)共生產(chǎn)該產(chǎn)品噸并全部銷售完.每噸的銷售收入為萬元,且

1)求該企業(yè)年總利潤(萬元)關(guān)于年產(chǎn)量(噸)的函數(shù)關(guān)系式:

2)當(dāng)年產(chǎn)量為多少噸時,該企業(yè)在這一產(chǎn)品的生產(chǎn)中所獲年總利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某企業(yè)生產(chǎn)某種產(chǎn)品的年固定成本為200萬元,且每生產(chǎn)1噸該產(chǎn)品需另投入12萬元,現(xiàn)假設(shè)該企業(yè)在一年內(nèi)共生產(chǎn)該產(chǎn)品噸并全部銷售完.每噸的銷售收入為萬元,且.

1)求該企業(yè)年總利潤(萬元)關(guān)于年產(chǎn)量(噸)的函數(shù)關(guān)系式;

2)當(dāng)年產(chǎn)量為多少噸時,該企業(yè)在這一產(chǎn)品的生產(chǎn)中所獲年總利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從2013年開始,國家教育部要求高中階段每學(xué)年都要組織學(xué)生進(jìn)行學(xué)生體質(zhì)健康測試,方案要求以學(xué)校為單位組織實施,某校對高一(1)班學(xué)生根據(jù)《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》的測試項目按百分制進(jìn)行了預(yù)備測試,并對50分以上的成績進(jìn)行統(tǒng)計,其頻率分布直方圖如圖.所示,已知[90,100]分?jǐn)?shù)段的人數(shù)為2.

(1)求[70,80)分?jǐn)?shù)段的人數(shù);

(2)現(xiàn)根據(jù)預(yù)備測試成績從成績在80分以上(含80分)的學(xué)生中任意選出2人代表班級參加學(xué)校舉行的一項體育比賽,求這2人的成績一個在[80,90)分?jǐn)?shù)段、一個在[90,100]分?jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】勒洛三角形是具有類似圓的定寬性的曲線,它是由德國機(jī)械工程專家、機(jī)構(gòu)運(yùn)動學(xué)家勒洛首先發(fā)現(xiàn),其作法是:以等邊三角形每個頂點為圓心,以邊長為半徑,在另兩個頂點間作一段弧,三段弧圍成的曲邊三角形就是勒洛三角形.如圖中的兩個勒洛三角形,它們所對應(yīng)的等邊三角形的邊長比為,若從大的勒洛三角形中隨機(jī)取一點,則此點取自小勒洛三角形內(nèi)的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報告中向全國人民發(fā)出的口號,某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:

試銷單價x(元)

4

5

6

7

8

9

產(chǎn)品銷量y(件)

q

84

83

80

75

68

已知

(Ⅰ)求出q的值;

(Ⅱ)已知變量x,y具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價x(元)的線性回歸方程;

(Ⅲ)用表示用(Ⅱ)中所求的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計值.當(dāng)銷售數(shù)據(jù)對應(yīng)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取3個,求“好數(shù)據(jù)”個數(shù)的分布列和數(shù)學(xué)期望

(參考公式:線性回歸方程中最小二乘估計分別為

查看答案和解析>>

同步練習(xí)冊答案