【題目】某校從高三年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,其成績(jī)(均為整數(shù))的頻率分布直方圖如圖所示:
(1)估計(jì)這次考試的及格率(60分及以上為及格)和平均分;
(2)按分層抽樣從成績(jī)是80分以上(包括80分)的學(xué)生中選取6人,再?gòu)倪@6人中選取兩人作為代表參加交流活動(dòng),求他們?cè)诓煌謹(jǐn)?shù)段的概率.
【答案】(1)及格率是80%;平均分是分(2)
【解析】
(1)由頻率分布直方圖直接可計(jì)算得及格率以及平均分;
(2)按分層抽樣知5人A,B,C,D,E,”1人F,寫(xiě)出基本事件,事件“不同分?jǐn)?shù)段”所包含的基本事件數(shù)5種,利用古典概型即可得到結(jié)論.
(1)依題意,60及以上的分?jǐn)?shù)所在的第三、四、五、六組,頻率和為,所以抽樣學(xué)生成績(jī)的合格率是80%.-
利用組中值估算抽樣學(xué)生的平均分:
.
估計(jì)這次考試的平均分是分
(2)按分層抽樣抽取5人A,B,C,D,E,”1人F.,則基本事件(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15種,事件“不同分?jǐn)?shù)段”所包含的基本事件數(shù)5種,
故所求概率為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), ().
(1)當(dāng)時(shí),若函數(shù)與的圖象在處有相同的切線,求的值;
(2)當(dāng)時(shí),若對(duì)任意和任意,總存在不相等的正實(shí)數(shù),使得,求的最小值;
(3)當(dāng)時(shí),設(shè)函數(shù)與的圖象交于 兩點(diǎn).求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在邊長(zhǎng)為2的菱形中,,于點(diǎn),將沿折起到的位置,使,如圖2.
(1)求證:平面;
(2)在線段上是否存在點(diǎn),使平面平面?若存在,求的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在這智能手機(jī)爆發(fā)的時(shí)代,大部分高中生都有手機(jī),在手機(jī)面前,有些學(xué)生無(wú)法抵御手機(jī)尤其是手機(jī)游戲和短視頻的誘惑,從而導(dǎo)致無(wú)法專(zhuān)心完成學(xué)習(xí)任務(wù),成績(jī)下滑;但是對(duì)于自制力強(qiáng),能有效管理自己的學(xué)生,手機(jī)不僅不會(huì)對(duì)他們的學(xué)習(xí)造成負(fù)面影響,還能成為他們學(xué)習(xí)的有力助手,我校某研究型學(xué)習(xí)小組調(diào)查研究“中學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)的影響”,部分統(tǒng)計(jì)數(shù)據(jù)如表:
參考數(shù)據(jù):,其中.
(1)試根據(jù)以上數(shù)據(jù),運(yùn)用獨(dú)立性檢驗(yàn)思想,指出有多大把握認(rèn)為中學(xué)生使用手機(jī)對(duì)學(xué)習(xí)有影響?
(2)研究小組將該樣本中不使用手機(jī)且成績(jī)優(yōu)秀的同學(xué)記為組,使用手機(jī)且成績(jī)優(yōu)秀的同學(xué)記為組,計(jì)劃從組推選的4人和組推選的2人中,隨機(jī)挑選兩人來(lái)分享學(xué)習(xí)經(jīng)驗(yàn).求挑選的兩人中一人來(lái)自組、另一人來(lái)自組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), .
(1) 關(guān)于的方程在區(qū)間上有解,求的取值范圍;
(2) 當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:()的左、右焦點(diǎn)分別為,,點(diǎn)P在橢圓上,,橢圓的離心率.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)A,B是橢圓C上與點(diǎn)P不重合的任意兩點(diǎn),若的重心是坐標(biāo)原點(diǎn)O,試證明:的面積為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,已知平面平面,且,為等邊三角形,,,.與平面所成角的正弦值為.
(1)證明:平面;
(2)若是的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)設(shè)是的極值點(diǎn),求實(shí)數(shù)的值,并求的單調(diào)區(qū)間:
(2)時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù));以原點(diǎn)極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
⑴ 求曲線的普通方程與曲線的直角坐標(biāo)方程;
⑵ 試判斷曲線與是否存在兩個(gè)交點(diǎn),若存在求出兩交點(diǎn)間的距離;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com