【題目】在極坐標系中,曲線方程為.以極點為原點,極軸為軸正半軸建立直角坐標系,直線,(t為參數(shù),).

(1)求曲線的直角坐標方程;

(2)設直線與曲線相交于兩點,求的取值范圍.

【答案】(1);(2)

【解析】

(1)根據(jù)公式,代入即可求得曲線C的直角坐標方程;

(2)將直線的參數(shù)方程代入圓的方程,根據(jù)參數(shù)的幾何意義,即可求解.

(1)由ρ2-2ρsin(θ+)-4=0得,

ρ2-2ρcosθ-2ρsinθ-4=0.

所以x2+y2-2x-2y-4=0.

曲線C的直角坐標方程為(x-1)2+(y-1)2=6.

(2)將直線l的參數(shù)方程代入x2+y2-2x-2y-4=0并整理得,

t2-2(sinα+cosα)t-4=0,

t1+t2=2(sinα+cosα),t1t2=-4<0.

||OA|-|OB||=||t1|-|t2||=|t1+t2|=|2(sinα+cosα)|=|2sin(α+)|

因為0≤α<,所以≤α+,

從而有-2<2sin(α+)≤2

所以||OA|-|OB||的取值范圍是[0,2].

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,平面底面,.分別是的中點,求證:

(Ⅰ)底面

(Ⅱ)平面;

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),若方程在區(qū)間內(nèi)有個不同的實數(shù)解,則實數(shù)的取值范圍為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) ).

(1)當時,若函數(shù)的圖象在處有相同的切線,求的值;

(2)當時,若對任意和任意,總存在不相等的正實數(shù),使得,求的最小值;

(3)當時,設函數(shù)的圖象交于 兩點.求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有15個省三好學生名額分給1、2、3、4共四個班級,其中1班至少2個名額,2班、4班每班至少3個名額,3班最多2個名額,則共有_________種不同分配方案.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)滿足,且.

1)求的解析式;

2)設函數(shù),當時,求的最小值;

3)設函數(shù),若對任意,總存在,使得成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】交大設計學院植物園準備用一塊邊長為4百米的等邊ΔABC田地(如圖)建立芳香植物生長區(qū)、植物精油提煉處與植物精油體驗點.田地內(nèi)擬建筆直小路MN、AP,其中M、N分別為AC、BC的中點,點PCN上.規(guī)劃在小路MNAP的交點O(OM、N不重合)處設立植物精油體驗點,圖中陰影部分為植物精油提煉處,空白部分為芳香植物生長區(qū),A、N為出入口(小路寬度不計).為節(jié)約資金,小路MO段與OP段建便道,供芳香植物培育之用,費用忽略不計,為車輛安全出入,小路AO段的建造費用為每百米4萬元,小路ON段的建造費用為每百米3萬元.

(1)若擬建的小路AO段長為百米,求小路ON段的建造費用;

(2)設∠BAP=,求的值,使得小路AO段與ON段的建造總費用最小,并求岀最小建造總費用(精確到元).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在邊長為2的菱形中,,于點,將沿折起到的位置,使,如圖2.

1)求證:平面;

2)在線段上是否存在點,使平面平面?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,已知平面平面,且為等邊三角形,,.與平面所成角的正弦值為.

1)證明:平面;

2)若的中點,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案