【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,直線與橢圓C交于A,B兩點(diǎn),且

(1)求橢圓C的方程.

(2)不經(jīng)過點(diǎn)的直線被圓截得的弦長與橢圓C的長軸長相等,且直線與橢圓C交于D,E兩點(diǎn),試判斷的周長是否為定值?若是,求出定值;若不是,請說明理由.

【答案】(1)(2)的周長為定值為,詳見解析

【解析】

(1)根據(jù)已知條件求出A、B兩點(diǎn)的坐標(biāo),再由和離心率為建立關(guān)于a,b,c的方程,從而得橢圓的方程;

(2)根據(jù)直線被圓所截得的弦長等于橢圓的長軸長得出k,m的關(guān)系,再將直線與橢圓的方程聯(lián)立消去y,得到交點(diǎn)的橫坐標(biāo)的韋達(dá)定理表達(dá)式,分別求出,得出的周長為定值,得解.

(1)因?yàn)?/span>,所以,則,所以橢圓C的方程可化為,

不妨令

易知

因?yàn)?/span>,所以,即,

,所以

所以橢圓C的方程為

(2)由(1)知橢圓C的長軸長為,因?yàn)橹本被圓截得的弦長與橢圓C的長軸長相等,所以圓的圓心OO為坐標(biāo)原點(diǎn))到直線l的距離,所以,即

設(shè),聯(lián)立方程,得整理得

所以,又,

所以

所以,

所以的周長是.

所以的周長為定值,為.

得解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線的焦點(diǎn),是拋物線上一點(diǎn),且.

1)求拋物線的標(biāo)準(zhǔn)方程;

2)過點(diǎn)的動直線交拋物線于兩點(diǎn),拋物線上是否存在一個定點(diǎn),使得以弦為直徑的圓恒過點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點(diǎn)處的切線方程;

(2)證明:在區(qū)間上有且僅有個零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,圓過橢圓的三個頂點(diǎn),過點(diǎn)的直線(斜率存在且不為0)與橢圓交于兩點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程.

2)證明:在軸上存在定點(diǎn),使得為定值,并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某個機(jī)械零件是由兩個有公共底面的圓錐組成的,且這兩個圓錐有公共點(diǎn)的母線互相垂直,把這個機(jī)械零件打磨成球形,該球的半徑最大為1,設(shè)這兩個圓錐的高分別為,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,一個長軸頂點(diǎn)在直線上,若直線與橢圓交于,兩點(diǎn),為坐標(biāo)原點(diǎn),直線的斜率為,直線的斜率為.

1)求該橢圓的方程.

2)若,試問的面積是否為定值?若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓與拋物線的一個公共點(diǎn),且橢圓與拋物線具有一個相同的焦點(diǎn)

(1)求橢圓及拋物線的方程;

(2)設(shè)過且互相垂直的兩動直線,與橢圓交于兩點(diǎn),與拋物線交于兩點(diǎn),求四邊形面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 為兩條不同的直線, , 為兩個不同的平面,對于下列四個命題:

, , , ,

, ,

其中正確命題的個數(shù)有(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓.

1)求過點(diǎn)的圓的切線方程;

2)若直線過點(diǎn)且被圓C截得的弦長為,求的范圍.

查看答案和解析>>

同步練習(xí)冊答案