【題目】橢圓 的離心率為,過其右焦點(diǎn)與長(zhǎng)軸垂直的直線與橢圓在第一象限相交于點(diǎn), .

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓的左頂點(diǎn)為,右頂點(diǎn)為,點(diǎn)是橢圓上的動(dòng)點(diǎn),且點(diǎn)與點(diǎn), 不重合,直線與直線相交于點(diǎn),直線與直線相交于點(diǎn),求證:以線段為直徑的圓恒過定點(diǎn).

【答案】(1) . (2)證明見解析.

【解析】試題分析:

(1)由題意可得,則橢圓C的標(biāo)準(zhǔn)方程為.

(2)由題意可得,結(jié)合題意可得圓的方程為,則以線段ST為直徑的圓恒過定點(diǎn).

試題解析:

1)解: ,又,聯(lián)立解得: ,

所以橢圓C的標(biāo)準(zhǔn)方程為.

2)證明:設(shè)直線AP的斜率為k,則直線AP的方程為

聯(lián)立.

,

整理得: ,故

, (分別為直線PA,PB的斜率),

所以

所以直線PB的方程為: ,

聯(lián)立,

所以以ST為直徑的圓的方程為: ,

,解得: ,

所以以線段ST為直徑的圓恒過定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), 為曲線在點(diǎn)處的切線.

)求的方程.

)當(dāng)時(shí),證明:除切點(diǎn)之外,曲線在直線的下方.

)設(shè), , ,且滿足,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上且過點(diǎn),離心率是.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)直線過點(diǎn)且與橢圓交于兩點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若實(shí)數(shù)數(shù)列滿足,則稱數(shù)列數(shù)列

若數(shù)列數(shù)列,且,求的值;

求證:若數(shù)列數(shù)列,則的項(xiàng)不可能全是正數(shù),也不可能全是負(fù)數(shù);

若數(shù)列數(shù)列,且中不含值為零的項(xiàng),記項(xiàng)中值為負(fù)數(shù)的項(xiàng)的個(gè)數(shù)為,求所有可能取值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 中,內(nèi)角的對(duì)邊分別為,已知,且, .

(1)求的面積.

(2)已知等差數(shù)列的公差不為零,若,且成等比數(shù)列,求的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)的導(dǎo)函數(shù)為

若直線與曲線恒相切于同一定點(diǎn),求的方程;

⑵ 若,求證:當(dāng)時(shí), 恒成立;

⑶ 若當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天100顆種子浸泡后的發(fā)芽率,得到如下表格:

(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均不小于25” 的概率;

(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請(qǐng)根據(jù)這5天中的另3天的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得到的線性回歸方程是否可靠?

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,若橢圓經(jīng)過點(diǎn),且的面積為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)斜率為的直線與以原點(diǎn)為圓心,半徑為的圓交于,兩點(diǎn),與橢圓交于,兩點(diǎn),且,當(dāng)取得最小值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則(ⅰ____________

ⅱ)給出下列三個(gè)命題:①函數(shù)是偶函數(shù);②存在,使得以點(diǎn)為頂點(diǎn)的三角形是等腰三角形;③存在,使得以點(diǎn)為頂點(diǎn)的四邊形為菱形.

其中,所有真命題的序號(hào)是____________

查看答案和解析>>

同步練習(xí)冊(cè)答案