【題目】已知函數(shù),則(ⅰ____________

ⅱ)給出下列三個(gè)命題:①函數(shù)是偶函數(shù);②存在,使得以點(diǎn)為頂點(diǎn)的三角形是等腰三角形;③存在,使得以點(diǎn)為頂點(diǎn)的四邊形為菱形.

其中,所有真命題的序號(hào)是____________

【答案】 1 ①③

【解析】。┯深}可知,所以

①若為有理數(shù),則也為有理數(shù),∴,

為無理數(shù),則也為無理數(shù),∴,

綜上有,∴函數(shù)為偶數(shù),故①正確

②根據(jù)可知:假設(shè)存在等腰直角三角形,則斜邊知能在軸上或在直線上,且斜邊上的高始終是,不妨假設(shè)軸,則,故點(diǎn) 的坐標(biāo)不可能是無理數(shù),故不存在.另外,當(dāng)上, 軸時(shí),由于,則的坐標(biāo)應(yīng)是有理數(shù),故假設(shè)不成立,即不存在符合題意的等腰直角三角形,故②錯(cuò)誤.

③取兩個(gè)自變量是有理數(shù),使得另外兩個(gè)無理數(shù)的差與兩個(gè)有理數(shù)的差相等,即可畫出平行四邊形,且對(duì)角線互相垂直,所以可以做出點(diǎn)為頂點(diǎn)的四邊形為菱形,故③正確.

綜上,所有真命題的序號(hào)是①③

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 的離心率為,過其右焦點(diǎn)與長軸垂直的直線與橢圓在第一象限相交于點(diǎn), .

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓的左頂點(diǎn)為,右頂點(diǎn)為,點(diǎn)是橢圓上的動(dòng)點(diǎn),且點(diǎn)與點(diǎn), 不重合,直線與直線相交于點(diǎn),直線與直線相交于點(diǎn),求證:以線段為直徑的圓恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率為,右焦點(diǎn)為,斜率為1的直線與橢圓交于、兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為

1)求橢圓的方程;

2)求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位最近組織了一次健身活動(dòng),活動(dòng)分為登山組和游泳組,且每個(gè)職工至多參加其中一組.在參加活動(dòng)的職工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山組的職工占參加活動(dòng)總?cè)藬?shù)的,且該組中青年人占50%,中年人占40%,老年人占10%.為了了解各組不同年齡層次的職工對(duì)本次活動(dòng)的滿意程度,現(xiàn)用分層抽樣的方法從參加活動(dòng)的全體職工中抽取一個(gè)容量為200的樣本.試確定:

(1)游泳組中,青年人、中年人、老年人分別所占的比例;

(2)游泳組中,青年人、中年人、老年人分別應(yīng)抽取的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 分別是的中點(diǎn),底面是邊長為2的正方形, ,且平面平面

1)求證:平面平面;

2)求平面與平面所成銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為的正方形與梯形所在的平面互相垂直,其中, 的中點(diǎn).

(Ⅰ)證明: 平面

(Ⅱ)求與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列, , 滿足,且當(dāng)時(shí), ,令

)寫出的所有可能的值.

)求的最大值.

)是否存在數(shù)列,使得?若存在,求出數(shù)列;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方形與梯形所在平面互相垂直,,,,點(diǎn)中點(diǎn) .

(1)求證:平面

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1, , ,過動(dòng)點(diǎn)A,垂足D在線段BC上且異于點(diǎn)B,連接AB,沿折起,使(如圖2所示).

1)當(dāng)的長為多少時(shí),三棱錐的體積最大;

2)當(dāng)三棱錐的體積最大時(shí),設(shè)點(diǎn)分別為棱, 的中點(diǎn),試在棱上確定一點(diǎn),使得 ,并求與平面所成角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案