【題目】某工廠家具車間造型兩類桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張型型桌子分別需要1小時(shí)和2小時(shí),漆工油漆一張、型型桌子分別需要3小時(shí)和1小時(shí);又知木工、漆工每天工作分別不得超過8小時(shí)和9小時(shí),而工廠造一張、型型桌子分別獲利潤2千元和3千元.

(1)列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出可行域;

(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

【答案】(1)見解析;(2) 每天應(yīng)生產(chǎn)型桌子2張,型桌子3張才能獲得最大利潤.

【解析】

先設(shè)每天生產(chǎn)A型桌子x張,B型桌子y張,利潤總額為z千元,根據(jù)題意抽象出xy滿足的條件,建立約束條件,作出可行域,再根據(jù)目標(biāo)函數(shù)z=2x+3y,利用截距模型,平移直線找到最優(yōu)解,即可.

(1)設(shè)每天生產(chǎn)型桌子張,型桌子張,則,

作出可行域如圖陰影所示:

(2)設(shè)目標(biāo)函數(shù)為:

把直線向右上方平移至的位置時(shí),直線經(jīng)過可行域上點(diǎn),且與原點(diǎn)距離最大,此時(shí)取最大值.

解方程的坐標(biāo)為.

答:每天應(yīng)生產(chǎn)型桌子2張,型桌子3張才能獲得最大利潤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行購物抽獎促銷活動,規(guī)定每位顧客從裝有編號為01,23四個(gè)相同小球的抽獎箱中,每次取出一球,記下編號后放回,連續(xù)取兩次,若取出的兩個(gè)小球號碼之和等于6,則中一等獎,等于5中二等獎,等于43中三等獎.

1)求中三等獎的概率;

2)求中獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

1)若曲線處的切線與直線垂直,求實(shí)數(shù)的值;

2)設(shè),若對任意兩個(gè)不等的正數(shù),都有恒成立,求實(shí)數(shù)的取值范圍;

3)若上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布N(0,32),從中隨機(jī)取一件,其長度誤差落在區(qū)間(3,6)內(nèi)的概率為(  )

(附:若隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.27%,P(μ-2σ<ξ<μ+2σ)=95.45%.)

A. 4.56%B. 13.59%C. 27.18%D. 31.74%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若x4(x+4)8=a0+a1(x+3)+a2(x+3)2+…+a12(x+3)12,則log2(a1+a3+…+a11)=( ).

A. 4B. 8C. 12D. 11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王在某社交網(wǎng) 絡(luò)的朋友圈中,向在線的甲、乙、丙隨機(jī)發(fā)放紅包,每次發(fā)放1個(gè).

(1)若小王發(fā)放5元的紅包2個(gè),求甲恰得1個(gè)的概率;

(2)若小王發(fā)放3個(gè)紅包,其中5元的2個(gè),10元的1個(gè),記乙所得紅包的總錢數(shù)為X,求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若在區(qū)間上存在單調(diào)遞減區(qū)間,求的取值范圍;

2)當(dāng)時(shí),在區(qū)間上的最大值為15,求在區(qū)間上的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足a11a22,an2 ,n123,….a3,a4,并求數(shù)列{an}的通項(xiàng)公式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,a、b是方程x2-2x+2=0的兩根,且2cos(A+B)=-1.

(1)求角C的度數(shù);

(2)求c;

(3)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案