【題目】已知某批零件的長(zhǎng)度誤差(單位:毫米)服從正態(tài)分布N(0,32),從中隨機(jī)取一件,其長(zhǎng)度誤差落在區(qū)間(3,6)內(nèi)的概率為( )
(附:若隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.27%,P(μ-2σ<ξ<μ+2σ)=95.45%.)
A. 4.56%B. 13.59%C. 27.18%D. 31.74%
【答案】B
【解析】
由題意P(﹣3<ξ<3)=68.27%,P(﹣6<ξ<6)=95.45%,可得P(3<ξ<6)=(95.45%﹣68.27%),即可得出結(jié)論.
解:由題意P(﹣3<ξ<3)=68.27%,P(﹣6<ξ<6)=95.45%,
∴P(3<ξ<6)=(95.45%﹣68.27%)=13.59%.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列滿(mǎn)足an=2an-1+2n+1(n∈N*,n≥2), .
(1)求的值;
(2)是否存在一個(gè)實(shí)數(shù)t,使得 (n∈N*),且數(shù)列{}為等差數(shù)列?若存在,求出實(shí)數(shù)t;若不存在,請(qǐng)說(shuō)明理由;
(3)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一智能掃地機(jī)器人在處發(fā)現(xiàn)位于它正西方向的處和北偏東30°方向上的處分別有需要清掃的垃圾,紅外線(xiàn)感應(yīng)測(cè)量發(fā)現(xiàn)機(jī)器人到的距離比到的距離少0.4米,于是選擇沿路線(xiàn)清掃,已知智能掃地機(jī)器人的直線(xiàn)行走速度為0.2,忽略機(jī)器人吸入垃圾及在處旋轉(zhuǎn)所用時(shí)間,10秒鐘完成了清掃任務(wù).
(1)、兩處垃圾的距離是多少?
(2)智能掃地機(jī)器人此次清掃行走路線(xiàn)的夾角的正弦值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線(xiàn)的極坐標(biāo)方程為 .
(Ⅰ) 寫(xiě)出圓 的參數(shù)方程和直線(xiàn)的直角坐標(biāo)方程;
( Ⅱ ) 設(shè)直線(xiàn) 與軸和軸的交點(diǎn)分別為,為圓上的任意一點(diǎn),求的取值范圍.
【答案】(1);.
(2).
【解析】【試題分析】(I)利用圓心和半徑,寫(xiě)出圓的參數(shù)方程,將圓的極坐標(biāo)方程展開(kāi)后化簡(jiǎn)得直角坐標(biāo)方程.(II)求得兩點(diǎn)的坐標(biāo), 設(shè)點(diǎn),代入向量,利用三角函數(shù)的值域來(lái)求得取值范圍.
【試題解析】
(Ⅰ)圓的參數(shù)方程為(為參數(shù)).
直線(xiàn)的直角坐標(biāo)方程為.
(Ⅱ)由直線(xiàn)的方程可得點(diǎn),點(diǎn).
設(shè)點(diǎn),則 .
.
由(Ⅰ)知,則 .
因?yàn)?/span>,所以.
【題型】解答題
【結(jié)束】
23
【題目】選修4-5:不等式選講
已知函數(shù), .
(Ⅰ)若對(duì)于任意, 都滿(mǎn)足,求的值;
(Ⅱ)若存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年2月9-25日,第23屆冬奧會(huì)在韓國(guó)平昌舉行.4年后,第24屆冬奧會(huì)將在中國(guó)北京和張家口舉行.為了宣傳冬奧會(huì),某大學(xué)在平昌冬奧會(huì)開(kāi)幕后的第二天,從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對(duì)是否收看平昌冬奧會(huì)開(kāi)幕式情況進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:
收看 | 沒(méi)收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(Ⅰ)根據(jù)上表說(shuō)明,能否有的把握認(rèn)為,收看開(kāi)幕式與性別有關(guān)?
(Ⅱ)現(xiàn)從參與問(wèn)卷調(diào)查且收看了開(kāi)幕式的學(xué)生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會(huì)志愿者宣傳活動(dòng).
(ⅰ)問(wèn)男、女學(xué)生各選取多少人?
(ⅱ)若從這8人中隨機(jī)選取2人到校廣播站開(kāi)展冬奧會(huì)及冰雪項(xiàng)目宣傳介紹,求恰好選到一名男生一名女生的概率P.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠家具車(chē)間造、型兩類(lèi)桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張、型型桌子分別需要1小時(shí)和2小時(shí),漆工油漆一張、型型桌子分別需要3小時(shí)和1小時(shí);又知木工、漆工每天工作分別不得超過(guò)8小時(shí)和9小時(shí),而工廠造一張、型型桌子分別獲利潤(rùn)2千元和3千元.
(1)列出滿(mǎn)足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫(huà)出可行域;
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠家具車(chē)間造、型兩類(lèi)桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張、型型桌子分別需要1小時(shí)和2小時(shí),漆工油漆一張、型型桌子分別需要3小時(shí)和1小時(shí);又知木工、漆工每天工作分別不得超過(guò)8小時(shí)和9小時(shí),而工廠造一張、型型桌子分別獲利潤(rùn)2千元和3千元.
(1)列出滿(mǎn)足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫(huà)出可行域;
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三課外興趣小組為了解高三同學(xué)高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級(jí)1500名男生、1000名女生中按分層抽樣的方式抽取125名學(xué)生進(jìn)行問(wèn)卷調(diào)查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數(shù)據(jù)b,c;
(2)判斷是否有99%的把握認(rèn)為觀看2018年足球世界杯比賽與性別有關(guān);
(3)為了計(jì)算“從10人中選出9人參加比賽”的情況有多少種,我們可以發(fā)現(xiàn)它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現(xiàn)有問(wèn)題:在打算觀看2018年足球世界杯比賽的同學(xué)中有5名男生、2名女生來(lái)自高三(5)班,從中推選5人接受校園電視臺(tái)采訪(fǎng),請(qǐng)根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是偶函數(shù),且滿(mǎn)足,當(dāng)時(shí), ,當(dāng)時(shí), 的最大值為.
(1)求實(shí)數(shù)的值;
(2)函數(shù),若對(duì)任意的,總存在,使不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com