【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD是棱長(zhǎng)為2的正方形,側(cè)面PAD為正三角形,且面PAD⊥面ABCD,E、F分別為棱AB、PC的中點(diǎn).
(1)求證:EF∥平面PAD.
(2)求三棱錐B-EFC的體積.
【答案】()見(jiàn)解析;().
【解析】
(1)取PC的中點(diǎn)G,證明四邊形EFGA是平行四邊形,可得EF∥AG,證得EF∥平面PAD.
(2)取AD中點(diǎn)O,可證PO⊥底面ABCD,進(jìn)而得到點(diǎn)F到面ABCD距離,利用等體積轉(zhuǎn)換,即可求三棱錐B-AEF的體積.
(1)證明:取PD中點(diǎn)G,連結(jié)GF、AG,
∵GF為△PDC的中位線,∴GF∥CD且,
又AE∥CD且,∴GF∥AE且GF=AE,
∴EFGA是平行四邊形,則EF∥AG,
又EF面PAD,AG面PAD,
∴EF∥面PAD;
(2)解:取AD中點(diǎn)O,連結(jié)PO,
∵面PAD⊥面ABCD,△PAD為正三角形,∴PO⊥面ABCD,且,
又PC為面ABCD斜線,F(xiàn)為PC中點(diǎn),∴F到面ABCD距離,
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)正整數(shù),若它的每個(gè)質(zhì)因數(shù)都至少是兩重的(即每個(gè)質(zhì)因數(shù)乘方次數(shù)都不小于2),則稱該正整數(shù)為“漂亮數(shù)”.相鄰兩個(gè)正整數(shù)皆為“漂亮數(shù)”,就稱它們是一對(duì)“孿生漂亮數(shù)”.例如8與9就是一對(duì)“孿生漂亮數(shù)”.請(qǐng)你再找出兩對(duì)“孿生漂亮數(shù)”來(lái).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,離心率為的橢圓的左頂點(diǎn)為,過(guò)原點(diǎn)的直線(與坐標(biāo)軸不重合)與橢圓交于兩點(diǎn),直線分別與軸交于, 兩點(diǎn).若直線斜率為 時(shí), .
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)試問(wèn)以為直徑的圓是否經(jīng)過(guò)定點(diǎn)(與直線的斜率無(wú)關(guān))?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若正數(shù) , 滿足 ,則 的最小值為( )
A. B. C. D.
【答案】A
【解析】正數(shù) , 滿足,則,
故答案為:A.
點(diǎn)睛:這個(gè)題目考查的是含有兩個(gè)變量的表達(dá)式的最值的求法,解決這類問(wèn)題一般有以下幾種方法,其一,不等式的應(yīng)用,這個(gè)題目用的是均值不等式,注意要滿足一正二定三相等;其二,二元化一元,減少變量的個(gè)數(shù);其三可以應(yīng)用線線性規(guī)劃的知識(shí)來(lái)解決,而線性規(guī)劃多用于含不等式的題目中。
【題型】單選題
【結(jié)束】
12
【題目】已知數(shù)列 為等差數(shù)列,若 ,且它的前 項(xiàng)和 有最大值,則使得 的 的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1 , F2分別是橢圓 的左、右焦點(diǎn)F1 , F2關(guān)于直線x+y﹣2=0的對(duì)稱點(diǎn)是圓C的一條直徑的兩個(gè)端點(diǎn).
(1)求圓C的方程;
(2)設(shè)過(guò)點(diǎn)F2的直線l被橢圓E和圓C所截得的弦長(zhǎng)分別為a,b.當(dāng)ab最大時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:元)。
(Ⅰ)將y表示為x的函數(shù);
(Ⅱ)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)滿足且,則稱函數(shù)為“函數(shù)”.
試判斷是否為“函數(shù)”,并說(shuō)明理由;
函數(shù)為“函數(shù)”,且當(dāng)時(shí),,求的解析式,并寫(xiě)出在上的單調(diào)遞增區(qū)間;
在條件下,當(dāng)時(shí),關(guān)于的方程為常數(shù)有解,記該方程所有解的和為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且滿足 = ,
(1)求角C的大。
(2)設(shè)函數(shù)f(x)=2sinxcosxcosC+2sin2xsinC﹣ ,求函數(shù)f(x)在區(qū)間[0, ]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,右頂點(diǎn)為,離心率為,已知點(diǎn)是拋物線的焦點(diǎn),點(diǎn)到拋物線準(zhǔn)線的距離是.
(1)求橢圓的方程和拋物線的方程;
(2)若是拋物線上的一點(diǎn)且在第一象限,滿足,直線交橢圓于兩點(diǎn),且,當(dāng)的面積取得最大值時(shí),求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com