【題目】某工廠生產(chǎn)一種汽車的元件,該元件是經(jīng)過、、三道工序加工而成的,、、三道工序加工的元件合格率分別為、、.已知每道工序的加工都相互獨立,三道工序加工都合格的元件為一等品;恰有兩道工序加工合格的元件為二等品;其它的為廢品,不進入市場.
(Ⅰ)生產(chǎn)一個元件,求該元件為二等品的概率;
(Ⅱ)若從該工廠生產(chǎn)的這種元件中任意取出3個元件進行檢測,求至少有2個元件是一等品的概率.
【答案】(Ⅰ);(Ⅱ).
【解析】
(Ⅰ)先分為互斥的三個事件,再根據(jù)獨立事件的概率求解;(Ⅱ)分為2個元件是一等品和3個元件是一等品兩種情況求解.
解:(Ⅰ)不妨設(shè)元件經(jīng)三道工序加工合格的事件分別為.
所以,,.,,.
設(shè)事件為“生產(chǎn)一個元件,該元件為二等品”.
由已知是相互獨立事件.
根據(jù)事件的獨立性、互斥事件的概率運算公式,
所以生產(chǎn)一個元件,該元件為二等品的概率為.
(Ⅱ)生產(chǎn)一個元件,該元件為一等品的概率為
.
設(shè)事件為“任意取出3個元件進行檢測,至少有2個元件是一等品”,則
.
所以至少有2個元件是一等品的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲同學(xué)每投籃一次,投進的概率均為.
(1)求甲同學(xué)投籃4次,恰有3次投進的概率;
(2)甲同學(xué)玩一個投籃游戲,其規(guī)則如下:最多投籃6次,連續(xù)2次不中則游戲終止.設(shè)甲同學(xué)在一次游戲中投籃的次數(shù)為,求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】宋元時期杰出的數(shù)學(xué)家朱世杰在其數(shù)學(xué)巨著《四元玉鑒》卷中“菱草形段”第一個問題“今有菱草六百八十束,欲令‘落一形’捶(同垛)之,問底子(每層三角形邊菱草束數(shù),等價于層數(shù))幾何?”中探討了“垛積術(shù)”中的落一形垛(“落一形”即是指頂上束,下一層束,再下一層束,……,成三角錐的堆垛,故也稱三角垛,如圖,表示第二層開始的每層菱草束數(shù)),則本問題中三角垛底層菱草總束數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】算籌是在珠算發(fā)明以前我國獨創(chuàng)并且有效的計算工具,為我國古代數(shù)學(xué)的發(fā)展做出了很大貢獻.在算籌計數(shù)法中,以“縱式”和“橫式”兩種方式來表示數(shù)字,如圖:
表示多位數(shù)時,個位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空,如圖:
如果把5根算籌以適當?shù)姆绞饺糠湃?下面的表格中,那么可以表示的三位數(shù)的個數(shù)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體中,分別為的中點,過任作一個平面分別與直線相交于點,則下列結(jié)論正確的是___________.①對于任意的平面,都有直線,,相交于同一點;②存在一個平面,使得點在線段上,點在線段的延長線上; ③對于任意的平面,都有;④對于任意的平面,當在線段上時,幾何體的體積是一個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在學(xué)年期末舉行“我最喜歡的文化課”評選活動,投票規(guī)則是一人一票,高一(1)班44名學(xué)生和高一(7)班45名學(xué)生的投票結(jié)果如下表(無廢票):
語文 | 數(shù)學(xué) | 外語 | 物理 | 化學(xué) | 生物 | 政治 | 歷史 | 地理 | |
高一(1)班 | 6 | 9 | 7 | 5 | 4 | 5 | 3 | 3 | 2 |
高一(7)班 | 6 | 4 | 5 | 6 | 5 | 2 | 3 |
該校把上表的數(shù)據(jù)作為樣本,把兩個班同一學(xué)科的得票之和定義為該年級該學(xué)科的“好感指數(shù)”.
(Ⅰ)如果數(shù)學(xué)學(xué)科的“好感指數(shù)”比高一年級其他文化課都高,求的所有取值;
(Ⅱ)從高一(1)班投票給政治、歷史、地理的學(xué)生中任意選取位同學(xué),設(shè)隨機變量為投票給地理學(xué)科的人數(shù),求的分布列和期望;
(Ⅲ)當為何值時,高一年級的語文、數(shù)學(xué)、外語三科的“好感指數(shù)”的方差最小?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求的極值;
(Ⅱ)若在區(qū)間上恒成立,求的取值范圍;
(Ⅲ)判斷函數(shù)的零點個數(shù).(直接寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列結(jié)論:
①“且為真”是“或為真”的充分不必要條件:②“且為假”是“或為真”的充分不必要條件;③“或為真”是“非為假”的必要不充分條件;④“非為真”是“且為假”的必要不充分條件.
其中,正確的結(jié)論是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com