【題目】已知橢圓:,四點,,,中恰有三點在橢圓上.
(1)求的方程;
(2)設(shè)的短軸端點分別為,,直線:交于,兩點,交軸于點,若,求實數(shù)的值.
【答案】(1);(2)
【解析】
(1)根據(jù)所給四個點的坐標(biāo)可知,關(guān)于軸對稱,當(dāng)恰有三點在橢圓上時,橢圓必經(jīng)過,.將坐標(biāo)代入橢圓方程可得等量關(guān)系.由點和橢圓的位置關(guān)系,可判斷出不在橢圓上,將代入橢圓方程,即可求得,得橢圓方程.
(2)設(shè)出直線與橢圓的兩個交點坐標(biāo)和與y軸的交點坐標(biāo).利用兩點間距離公式可表示出.將直線方程與橢圓方程聯(lián)立,根據(jù)兩個交點可知判別式,求得的取值范圍.結(jié)合韋達(dá)定理表示出.根據(jù)坐標(biāo)表示出,再由等量關(guān)系,即可消去求得的值.
(1)由于,關(guān)于軸對稱,當(dāng)恰有三點在橢圓上時,橢圓必經(jīng)過,.
所以.
又將代入橢圓方程可知,所以不經(jīng)過點,
則點在橢圓上,所以代入可得,即
因此,
故的方程為.
(2)直線:.則,設(shè)與的兩個交點分別為,,,
則,
由兩點間距離公式可知,
.
將直線方程與橢圓方程聯(lián)立,化簡可得.
當(dāng)時,即時,
.
所以.
由(1)得,所以.
等式可化為.
因為,所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年中秋節(jié)到來之際,某超市為了解中秋節(jié)期間月餅的銷售量,對其所在銷售范圍內(nèi)的1000名消費者在中秋節(jié)期間的月餅購買量單位:進(jìn)行了問卷調(diào)查,得到如下頻率分布直方圖:
求頻率分布直方圖中a的值;
以頻率作為概率,試求消費者月餅購買量在的概率;
已知該超市所在銷售范圍內(nèi)有20萬人,并且該超市每年的銷售份額約占該市場總量的,請根據(jù)這1000名消費者的人均月餅購買量估計該超市應(yīng)準(zhǔn)備多少噸月餅恰好能滿足市場需求頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點值作代表?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)求的極值;
(2)若對任意的,當(dāng)時,恒成立,求實數(shù)的最大值;
(3)若函數(shù)恰有兩個不相等的零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了保障全國第四次經(jīng)濟(jì)普查順利進(jìn)行,國家統(tǒng)計局從東部選擇江蘇, 從中部選擇河北. 湖北,從西部選擇寧夏, 從直轄市中選擇重慶作為國家綜合試點地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).在普查過程中首先要進(jìn)行宣傳培訓(xùn),然后確定對象,最后入戶登記. 由于種種情況可能會導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點經(jīng)驗. 在某普查小區(qū),共有 50 家企事業(yè)單位,150 家個體經(jīng)營戶,普查情況如下表所示:
普查對象類別 | 順利 | 不順利 | 合計 |
企事業(yè)單位 | 40 | 10 | 50 |
個體經(jīng)營戶 | 100 | 50 | 150 |
合計 | 140 | 60 | 200 |
(1)寫出選擇 5 個國家綜合試點地區(qū)采用的抽樣方法;
(2)根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”;
(3)以頻率作為概率, 某普查小組從該小區(qū)隨機(jī)選擇 1 家企事業(yè)單位,3 家個體經(jīng)營戶作為普查對象,入戶登記順利的對象數(shù)記為, 寫出的分布列,并求的期望值.
附:
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.88 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,動圓過定點且與圓相切,圓心的軌跡為曲線.
(1)求的方程;
(2)設(shè)斜率為1的直線交于,兩點,交軸于點,軸交于,兩點,若,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,底面為菱形,,平面,、分別是、上的中點,直線與平面所成角的正弦值為,點在上移動.
(Ⅰ)證明:無論點在上如何移動,都有平面平面;
(Ⅱ)求點恰為的中點時,二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若項數(shù)為的單調(diào)增數(shù)列滿足:①;②對任意,存在使得;則稱數(shù)列具有性質(zhì).
(1)分別判斷數(shù)列1,3,4,7和1,2,3,5是否具有性質(zhì),并說明理由;
(2)若數(shù)列具有性質(zhì),且.
(i)證明數(shù)列的項數(shù);
(ii)求數(shù)列中所有項的和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的方程為,以為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線是圓心在極軸上且經(jīng)過極點的圓,射線與曲線交于點.
(1)求曲線的參數(shù)方程,的極坐標(biāo)方程;
(2)若,是曲線上的兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的個數(shù)是( )
(1)已知沙坪壩明天刮風(fēng)的概率P(A)=0.5,下雨的概率=0.3,則沙坪壩明天又刮風(fēng)又下雨的概率 .
(2)命題 p :直線ax y 1 0 和3x (a 2) y 3 0 平行; 命題 q : a 3 .則 q 是 p 的必要條件.
(3)被7 除后所得的余數(shù)為5.
(4) 已知i 是虛數(shù)單位,復(fù)數(shù),則最小值是2.
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com