【題目】已知橢圓的左右焦點分別為點.為橢圓上的一動點,面積的最大值為.過點的直線被橢圓截得的線段為,當(dāng)軸時,

(1)求橢圓的方程;

(2)橢圓上任取兩點A,B,以,為鄰邊作平行四邊形.若,則是否為定值?若是,求出定值;如不是,請說明理由.

【答案】(1);(2)是定值,10

【解析】

1)由已知條件可知,再結(jié)合,求橢圓方程;

2)設(shè),,由平行四邊形法則,所以.

所以,再變形為,再根據(jù)已知條件轉(zhuǎn)化坐標(biāo)間的關(guān)系,求得定值.

1)由題意:的最大面積,.

,聯(lián)立方程可解得,所以橢圓的方程為:.

2)設(shè),,由平行四邊形法則,所以.

所以.

又因為,即,即.

又因為點A,B在橢圓上,則,

可得①, ②,

①×②可得

,所以,.

又①+②可得,可得.

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代科學(xué)家祖沖之兒子祖暅在實踐的基礎(chǔ)上提出了體積計算的原理:“冪勢既同,則積不容異”(“冪”是截面積,“勢”是幾何體的高),意思是兩個同高的幾何體,如在等高處截面的面積恒相等,則它們的體積相等.已知某不規(guī)則幾何體與如圖所示的三視圖所表示的幾何體滿足“冪勢既同”,則該不規(guī)則幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線為:到兩定點、距離乘積為常數(shù)的動點的軌跡.以下結(jié)論正確的個數(shù)為(

1)曲線一定經(jīng)過原點;

2)曲線關(guān)于軸、軸對稱;

3的面積不大于;

4)曲線在一個面積為的矩形范圍內(nèi).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校積極開展服務(wù)社會,提升自我的志愿者服務(wù)活動,九年級的五名同學(xué)(三男兩女)成立了交通秩序維護(hù)小分隊.若從該小分隊中任選兩名同學(xué)進(jìn)行交通秩序維護(hù),則恰是一男一女的概率是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則方程恰好有6個不同的解,則實數(shù)的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(Ⅰ)求證:當(dāng)時,

(Ⅱ)存在,使得成立,求a的取值范圍;

(Ⅲ)若恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人同時參加一個外貿(mào)公司的招聘,招聘分筆試與面試兩部分,先筆試后面試.甲筆試與面試通過的概率分別為0.8,0.5,乙筆試與面試通過的概率分別為0.8,0.4,且筆試通過了才能進(jìn)入面試,面試通過則直接招聘錄用,兩人筆試與面試相互獨立互不影響.

(1)求這兩人至少有一人通過筆試的概率;

(2)求這兩人筆試都通過卻都未被錄用的概率;

(3)記這兩人中最終被錄用的人數(shù)為X,X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油

D. 某城市機(jī)動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于任意,若數(shù)列滿足,則稱這個數(shù)列為“K數(shù)列”.

1)已知數(shù)列:1,,是“K數(shù)列”,求實數(shù)m的取值范圍;

2)是否存在首項為-1的無窮等差數(shù)列為“K數(shù)列”,且其前n項和滿足:,若存在,求出的通項公式;若不存在,請說明理由;

3)已知各項均為正整數(shù)的等比數(shù)列(至少有4項)為“K數(shù)列”,數(shù)列不是“K數(shù)列”,若,是否存在,使為“K數(shù)列”?若存在,請求出,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案