【題目】某省確定從2021年開始,高考采用的模式,取消文理分科,即“3”包括語(yǔ)文、數(shù)學(xué)、外語(yǔ),為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學(xué)、地理、政治中選擇兩門,共計(jì)六門考試科目.某高中從高一年級(jí)2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查.

1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);

2)學(xué)校計(jì)劃在高二上學(xué)期開設(shè)選修中的物理歷史兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問(wèn)卷調(diào)杳(假定每名學(xué)生在這兩個(gè)科目中必須洗擇一個(gè)科目且只能選擇一個(gè)科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;

性別

選擇物理

選擇歷史

總計(jì)

男生

50

女生

30

總計(jì)

3)在(2)的條件下,從抽取的選擇物理的學(xué)生中按分層抽樣抽取6人,再?gòu)倪@6名學(xué)生中抽取2人,對(duì)物理的選課意向作深入了解,求2人中至少有1名女生的概率.

附:,其中.

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1,女生人數(shù)為;(2)列聯(lián)表見解析,有的把握認(rèn)為選擇科目與性別有關(guān),理由見解析;(3

【解析】

1)利用公式:每層抽取數(shù)總?cè)藬?shù)抽樣比計(jì)算;

2)利用公式計(jì)算即可;

3)采用枚舉法,枚舉出基本事件總數(shù)以及事件“2人中至少有1名女生”所包含的基本事件個(gè)數(shù),再利用古典概型的概率計(jì)算公式計(jì)算即可.

1)因?yàn)?/span>,所以,女生人數(shù)為.

2)列聯(lián)表為:

性別

選擇物理

選擇歷史

總計(jì)

男生

60

50

110

女生

30

60

90

總計(jì)

90

110

200

的觀測(cè)值,所以有的把握認(rèn)為選擇科目與性別有關(guān).

3 90個(gè)選擇物理的學(xué)生中采用分層抽樣的方法抽6名, 6名學(xué)生中有4名男生,

記為,,2名女生記為,.抽取2人所有的情況為、

、、、、、、、、、

、,共15種,選取的2人中至少有1名女生情況的有、

、、、,共9種,故所求

概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的右頂點(diǎn)為,左、右焦點(diǎn)分別為、,過(guò)點(diǎn)且斜率為的直線與軸交于點(diǎn),與橢圓交于另一個(gè)點(diǎn),且點(diǎn)軸上的射影恰好為點(diǎn)

1)求點(diǎn)的坐標(biāo);

2)過(guò)點(diǎn)且斜率大于的直線與橢圓交于兩點(diǎn),若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列滿足,數(shù)列數(shù)列,記.

1)寫出一個(gè)滿足,且數(shù)列;

2)若,,證明:數(shù)列是遞增數(shù)列的充要條件是;

3)對(duì)任意給定的整數(shù),是否存在首項(xiàng)為0數(shù)列,使得?如果存在,寫出一個(gè)滿足條件的數(shù)列;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】趙爽是我國(guó)漢代數(shù)學(xué)家、天文學(xué)家,他在注解《周髀算經(jīng)》時(shí),介紹了勾股圓方圖,亦稱趙爽弦圖,它被2002年國(guó)際數(shù)學(xué)家大會(huì)選定為會(huì)徽.“趙爽弦圖是以弦為邊長(zhǎng)得到的正方形,該正方形由4個(gè)全等的直角三角形加上中間一個(gè)小正方形組成類比趙爽弦圖,可類似地構(gòu)造如圖所示的圖形它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形設(shè)DF2AF2,若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自三個(gè)全等三角形(陰影部分)的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,底面是正方形,平面,,的中點(diǎn).

1)求證:平面平面;

2)求二面角的大小;

3)試判斷所在直線與平面是否平行,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從①前項(xiàng)和,②,③,這三個(gè)條件中任選一個(gè),補(bǔ)充到下面的問(wèn)題中,并完成解答.

在數(shù)列中,_______,其中

(Ⅰ)求的通項(xiàng)公式;

(Ⅱ)若成等比數(shù)列,其中,且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】割圓術(shù)是我國(guó)古代計(jì)算圓周率的一種方法.在公元年左右,由魏晉時(shí)期的數(shù)學(xué)家劉徽發(fā)明.其原理就是利用圓內(nèi)接正多邊形的面積逐步逼近圓的面積,進(jìn)而求.當(dāng)時(shí)劉微就是利用這種方法,把的近似值計(jì)算到之間,這是當(dāng)時(shí)世界上對(duì)圓周率的計(jì)算最精確的數(shù)據(jù).這種方法的可貴之處就是利用已知的、可求的來(lái)逼近未知的、要求的,用有限的來(lái)逼近無(wú)窮的.為此,劉微把它概括為割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無(wú)所失矣”.這種方法極其重要,對(duì)后世產(chǎn)生了巨大影響,在歐洲,這種方法后來(lái)就演變?yōu)楝F(xiàn)在的微積分.根據(jù)割圓術(shù),若用正二十四邊形來(lái)估算圓周率,則的近似值是( )(精確到)(參考數(shù)據(jù)

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直三棱柱的底面為等腰直角三角形,其中,點(diǎn)是線段的中點(diǎn).

(Ⅰ)若點(diǎn)滿足,且,求的值;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若恒成立,求實(shí)數(shù)的最大值;

(2)在(1)成立的條件下,正實(shí)數(shù),滿足,證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案