【題目】設(shè)數(shù)列{an}的前n項和為Sn . 若對任意正整數(shù)n,總存在正整數(shù)m,使得Sn=am , 則稱{an}是“H數(shù)列”.
(1)若數(shù)列{an}的前n項和Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;
(2)設(shè){an}是等差數(shù)列,其首項a1=1,公差d<0.若{an}是“H數(shù)列”,求d的值.
【答案】
(1)證明:當(dāng)n=1時,a1=S1=2,
當(dāng)n≥2時,an=Sn﹣Sn﹣1=2n﹣2n﹣1=2n﹣1,
所以 ,
所以對任意的n∈N*, 是數(shù)列{an}中的第n+1項,
因此數(shù)列{an}是“H數(shù)列”
(2)解:依題意,an=1+(n﹣1)d, ,
若{an}是“H數(shù)列”,則對任意的n∈N*,都存在k∈N*使得ak=Sn,
即1+(k﹣1)d= ,
所以 ,
又因為k∈N*, ,
所以對任意的n∈N*, ,且d<0,
所以d=﹣1.
【解析】(1)由已知得 ,由此能證明數(shù)列{an}是“H數(shù)列”.(2)依題意,an=1+(n﹣1)d, ,若{an}是“H數(shù)列”,則1+(k﹣1)d= ,由此能求出d的值.
【考點精析】通過靈活運用數(shù)列的通項公式,掌握如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為梯形, 底面, , , , .
(1)求證:平面 平面;
(2)設(shè)為上的一點,滿足,若直線與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD的底面是矩形,側(cè)面PAB是正三角形,且平面PAB⊥平面ABCD,E是PA的中點,AC與BD的交點為M.
(1)求證:PC∥平面EBD;
(2)求證:BE⊥平面AED.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)設(shè)關(guān)于的一元二次方程 ()有兩根和,且滿足.
(1)試用表示;
(2)求證:數(shù)列是等比數(shù)列;
(3)當(dāng)時,求數(shù)列的通項公式,并求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足Sn=2an+n(n∈N*).
(1)求證數(shù)列{an﹣1}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)若bn=log2(﹣an+1),求數(shù)列{ }的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣a|+|x﹣5|.
(1)當(dāng)a=1時,求f(x)的最小值;
(2)如果對任意的實數(shù)x,都有f(x)≥1成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從數(shù)字1,2,3,4,5中,隨機(jī)抽取3個數(shù)字(允許重復(fù))組成一個三位數(shù),其各位數(shù)字之和等于9的概率為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com