A. | (0,$\frac{1}{2}$) | B. | (-∞,0)∪($\frac{1}{2}$,+∞) | C. | ($\frac{1}{2}$,+∞) | D. | ($\frac{1}{2}$,$\frac{\sqrt{2}+1}{4}$] |
分析 根據(jù)一元二次方程根的個數(shù)與△的關系,結(jié)合韋達定理,可得關于x的方程2ax2-x+2a-1=0的兩根均為正實數(shù)時,$\left\{\begin{array}{l}a≠0\\△=1-8a(2a-1)≥0\\ \frac{1}{2a}>0\\ \frac{2a-1}{2a}>0\end{array}\right.$,解得實數(shù)a的取值范圍.
解答 解:若關于x的方程2ax2-x+2a-1=0的兩根均為正實數(shù),
則$\left\{\begin{array}{l}a≠0\\△=1-8a(2a-1)≥0\\ \frac{1}{2a}>0\\ \frac{2a-1}{2a}>0\end{array}\right.$,
解得:a∈($\frac{1}{2}$,$\frac{\sqrt{2}+1}{4}$],
故選:D
點評 本題考查的知識點是一元二次方程根的分布與系數(shù)的關系,難度不大,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
當天處罰金額x(單位:元) | 0 | 5 | 10 | 15 | 20 |
當天闖紅燈的人數(shù)y | 80 | 50 | 40 | 20 | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>0且b2-4ac>0 | B. | -$\frac{2a}$>0 | C. | b2-4ac>0 | D. | -$\frac{2a}<0$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com