4.已知$\overrightarrow{a}$=(λ+2,1),$\overrightarrow$=(1,λ),若$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角θ∈[0,$\frac{π}{2}$),則實(shí)數(shù)λ的取值范圍是[-1,+∞).

分析 由$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角θ∈[0,$\frac{π}{2}$),可得($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)≥0,即$|\overrightarrow{a}{|}^{2}-|\overrightarrow{|}^{2}≥0$,轉(zhuǎn)化為關(guān)于λ的不等式得答案.

解答 解:∵$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角θ∈[0,$\frac{π}{2}$),
∴($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)≥0,
即$|\overrightarrow{a}{|}^{2}-|\overrightarrow{|}^{2}≥0$,
又∵$\overrightarrow{a}$=(λ+2,1),$\overrightarrow$=(1,λ),
∴(λ+2)2+1≥λ2+1,
解得:λ≥-1.
故答案為:[-1,+∞).

點(diǎn)評(píng) 本題考查了數(shù)量積運(yùn)算性質(zhì)、向量的夾角、向量共線定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.偶函數(shù)f(x)滿足f(x+4)=f(x),且f(x)=$\left\{\begin{array}{l}{{3}^{x},1<x<2}\\{lo{g}_{3}x,0<x<1}\end{array}\right.$,設(shè)a=f(-9.3),b=f(-2.8),c=f(-7.3),則a,b,c的大小關(guān)系為( 。
A.a>b>cB.a>c>bC.b>a>cD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.圓C的半徑為$\sqrt{13}$,且與直線2x+3y-10=0切于點(diǎn)P(2,2).
(1)求圓C的方程;
(2)若原點(diǎn)不在圓C的內(nèi)部,且圓x2+y2=m與圓C相交,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.己知橢圓方程C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),經(jīng)過(guò)點(diǎn)(1,$\frac{\sqrt{2}}{2}$),且兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等腰直角三角形.
(1)求橢圓方程;
(2)過(guò)橢圓右頂點(diǎn)的兩條斜率乘積為-$\frac{1}{2}$的直線分別交橢圓于M,N兩點(diǎn),試問(wèn):直線MN是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)求出此定點(diǎn),若不過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若關(guān)于x的方程2ax2-x+2a-1=0的兩根均為正實(shí)數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{1}{2}$)B.(-∞,0)∪($\frac{1}{2}$,+∞)C.($\frac{1}{2}$,+∞)D.($\frac{1}{2}$,$\frac{\sqrt{2}+1}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,左右焦點(diǎn)分別是F1,F(xiàn)2,以F1為圓心以3為半徑的圓與以F2為圓心以1為半徑的圓相交,且交點(diǎn)在橢圓C上.
 (I)求橢圓C的方程;
(II)設(shè)橢圓E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4^{2}}$=1,P為橢圓C上任意一點(diǎn),過(guò)點(diǎn)P的直線y=kx+m交橢圓E于A,B兩點(diǎn).射線PO交橢圓E于點(diǎn)Q.
(i)求$\frac{|OQ|}{|OP|}$的值,(ii)求△ABQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知10α=2,10β=3,求100${\;}^{2α-\frac{1}{3}β}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知兩點(diǎn)P(1,3)Q(4,-1),則這兩點(diǎn)間的距離為( 。
A.35B.25C.15D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在等比數(shù)列{an}中,已知對(duì)任意正整數(shù)n,a1+a2+…+an=3n-1,則a12+a22+…+an2=$\frac{{9}^{n}-1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案