【題目】已知函數(shù).
(1)若函數(shù)的圖象與x軸相切,求實數(shù)a的值;
(2)討論函數(shù)的零點個數(shù).
【答案】(1)1(2)當(dāng)或時,函數(shù)有唯一零點;當(dāng)或時,函數(shù)有兩個零點.
【解析】
(1)令,求切點,再根據(jù)求的值;
(2),當(dāng)時討論函數(shù)的單調(diào)性,求零點個數(shù),當(dāng)時,判斷函數(shù)的單調(diào)性,可知函數(shù)的單調(diào)性,并得到函數(shù)的最大值,設(shè),根據(jù)(1)的單調(diào)性,再討論函數(shù)的零點個數(shù).
(1),令,則,
因為函數(shù)的圖象與x軸相切,所以,
即,
令,則,
當(dāng)時,,函數(shù)單調(diào)遞減;
當(dāng)時,,函數(shù)單調(diào)遞增,所以,
所以有唯一解,即實數(shù)a的值為1.
(2),
①當(dāng)時,,函數(shù)在上單調(diào)遞增,且,函數(shù)有唯一零點;
②當(dāng)時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,
,
由(1)的單調(diào)性知:
(。┊(dāng)時,,所以函數(shù)只有一個零點;
(ⅱ)當(dāng)時,,,
所以函數(shù)在上有一個零點,,
令,則,
所以函數(shù)在上單調(diào)遞增,又,故
當(dāng)時,,所以,
所以函數(shù)在上有一個零點,
所以函數(shù)在上有兩個零點;
(ⅲ)當(dāng)時,,,
所以函數(shù)在上有一個零點,
當(dāng)時,,,
所以函數(shù)在上有一個零點,
所以函數(shù)在上有兩個零點,
綜上,當(dāng)或時,函數(shù)有唯一零點;
當(dāng)或時,函數(shù)有兩個零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新疆在種植棉花有著得天獨厚的自然條件,土質(zhì)呈堿性,夏季溫差大,陽光充足,光合作用充分,生長時間長,這種環(huán)境下種植的棉花絨長品質(zhì)好產(chǎn)量髙,所以新疆棉花舉世聞名.每年五月份,新疆地區(qū)進入災(zāi)害天氣高發(fā)期,災(zāi)害天數(shù)對當(dāng)年棉花產(chǎn)量有著重要影響,根據(jù)過去五年的數(shù)據(jù)統(tǒng)計,得到相關(guān)數(shù)據(jù)如下表:
災(zāi)害天氣天數(shù)(天) | 2 | 3 | 4 | 5 | 8 |
棉花產(chǎn)量(噸/公頃) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲乙兩種不同的回歸模型,得到兩個回歸方程,
方程甲:,方程乙:.
(1)為了評價兩種模型的擬合效果,完成以下任務(wù):① 完成下表;(計算結(jié)果精確到0.1)
②分別計算模型甲與模型乙的殘差平方和及,并比鉸的大小,判斷哪個模型擬合效果更好?
災(zāi)害天氣天數(shù)(天) | 2 | 3 | 4 | 5 | 8 | |
棉花產(chǎn)量(噸公頃) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計值 | 2.4 | 2.1 | 1.6 | ||
殘差 | 0 | 0.1 | ||||
模型乙 | 估計值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
(2)根據(jù)天氣預(yù)報,今年五月份新疆市災(zāi)害天氣是6天的概率是0.5,災(zāi)害天氣是7天的概率為0.4,災(zāi)害天氣是10天的概率為0.1,若何女士在新疆市承包了15公頃地種植棉花,請你根據(jù)第(1)問中擬合效果較好的模型估計一下何女士今年棉花的產(chǎn)量.(計算過程中所有結(jié)果精確到0.01)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明和父母都喜愛《中國好聲音》這欄節(jié)目,年月日晚在鳥巢進行中國好聲音終極決賽,四強選手分別為李榮浩戰(zhàn)隊的邢晗銘,那英戰(zhàn)隊的斯丹曼簇,王力宏戰(zhàn)隊的李芷婷,庾澄慶戰(zhàn)隊的陳其楠,決賽后四位選手相應(yīng)的名次為、、、,某網(wǎng)站為提升娛樂性,邀請網(wǎng)友在比賽結(jié)束前對選手名次進行預(yù)測.現(xiàn)用、、、表示某網(wǎng)友對實際名次為、、、的四位選手名次做出的一種等可能的預(yù)測排列,是該網(wǎng)友預(yù)測的名次與真實名次的偏離程度的一種描述.
(1)求的分布列及數(shù)學(xué)期望;
(2)按(1)中的結(jié)果,若小明家三人的排序號與真實名次的偏離程度都是,計算出現(xiàn)這種情況的概率(假定小明家每個人排序相互獨立).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左,右焦點分別是,,離心率為,直線被橢圓C截得的線段長為.
(1)求橢圓C的方程;
(2)過點且斜率為k的直線l交橢圓C于A,B兩點,交x軸于P點,點A關(guān)于x軸的對稱點為M,直線BM交x軸于Q點.求證:(O為坐標(biāo)原點)為常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】無窮數(shù)列滿足:,且對任意正整數(shù),為前項,,…,中等于的項的個數(shù).
(1)直接寫出,,,;
(2)求證:該數(shù)列中存在無窮項的值為1;
(3)已知,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現(xiàn)將正方形沿折起,使得平面平面.
(1)證明:平面.
(2)若,當(dāng)三棱錐的體積最大時,求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個不同的極值點.
(1)求的取值范圍.
(2)求的極大值與極小值之和的取值范圍.
(3)若,則是否有最小值?若有,求出最小值;若沒有,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱柱的底面是正方形,側(cè)面是矩形,,為的中點,平面平面.
(1)證明:平面;
(2)判斷二面角是否為直二面角,不用說明理由;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點到定點的距離之和為4.
(1)求動點的軌跡方程
(2)若軌跡與直線交于兩點,且求的值.
(3)若點與點在軌跡上,且點在第一象限,點在第二象限,點與點關(guān)于原點對稱,求證:當(dāng)時,三角形的面積為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com