【題目】如圖,四棱錐中,底面,,底面是直角梯形,.
(Ⅰ)求證:平面平面;
(Ⅱ)在棱上是否存在一點,使//平面?若存在,請確定點的位置;若不存在,請說明理由.
【答案】(Ⅰ)詳見解析;(Ⅱ)存在,為的中點.
【解析】
(1)設(shè)PA=1,由勾股定理得AC⊥CD,又PA⊥CD,由線面垂直的判定定理可知CD⊥面PAC,根據(jù)面面垂直的判定定理可得到證明;(2)作CF∥AB交于AD于F,作EF∥AP交于PD于E,連接CE,根據(jù)面面平行的性質(zhì)定理知平面EFC∥平面PAB,由面面平行的性質(zhì)可知CE∥平面PAB,根據(jù)線面關(guān)系可確定E為PD中點.
解:設(shè),
(Ⅰ)由題意,
∵,由,易得,
由勾股定理逆定理得,
又∵平面,平面,
∴,,
∴平面,
又平面,
∴平面平面;
(Ⅱ)
存在,
證明:作交于,作交于,連接,
∵ ,,可得,
,,可得,
,,
∴平面平面,
又在平面內(nèi),∴平面,
∵,
∴為的中點,
∴為的中點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點.
(1)若一條直線經(jīng)過點,且原點到直線的距離為,求該直線的一般式方程;
(2)求過點且與原點距離最大的直線的一般式方程,并求出最大距離是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生產(chǎn)企業(yè)對其所生產(chǎn)的甲、乙兩種產(chǎn)品進(jìn)行質(zhì)量檢測,分別各抽查6件產(chǎn)品,檢測其重量的誤差,測得數(shù)據(jù)如下(單位:):
甲:13 15 13 8 14 21
乙:15 13 9 8 16 23
(1)畫出樣本數(shù)據(jù)的莖葉圖;
(2)分別計算甲、乙兩組數(shù)據(jù)的方差并分析甲、乙兩種產(chǎn)品的質(zhì)量(精確到0.1)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,為上一點.
(1)若平面,試說明點的位置并證明的結(jié)論;
(2)若為的中點,平面,且,
求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)討論函數(shù)的定義域內(nèi)的極值點的個數(shù);
(2)若函數(shù)在處取得極值,恒成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線:,:,則下面結(jié)論正確的是( )
A.把上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線
B.把上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線
C.把上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線
D.把上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,AA1ABAC2,AB⊥AC,M是棱BC的中點點P在線段A1B上.
(1)若P是線段A1B的中點,求直線MP與直線AC所成角的大;
(2)若是的中點,直線與平面所成角的正弦值為,求線段BP的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求解下列各題.
(1)已知,且為第一象限角,求,;
(2)已知,且為第三象限角,求,;
(3)已知,且為第四象限角,求,;
(4)已知,且為第二象限角,求,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,的直角邊OA在x軸上,頂點B的坐標(biāo)為,直線CD交AB于點,交x軸于點.
(1)求直線CD的方程;
(2)動點P在x軸上從點出發(fā),以每秒1個單位的速度向x軸正方向運動,過點P作直線l垂直于x軸,設(shè)運動時間為t.
①點P在運動過程中,是否存在某個位置,使得?若存在,請求出點P的坐標(biāo);若不存在,請說明理由;
②請?zhí)剿鳟?dāng)t為何值時,在直線l上存在點M,在直線CD上存在點Q,使得以OB為一邊,O,B,M,Q為頂點的四邊形為菱形,并求出此時t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com