【題目】2019年慶祝中華人民共和國成立70周年閱兵式彰顯了中華民族從站起來、富起來邁向強(qiáng)起來的雄心壯志.閱兵式規(guī)模之大、類型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強(qiáng)軍成就.裝備方陣堪稱“強(qiáng)軍利刃”“強(qiáng)國之盾”,見證著人民軍隊(duì)邁向世界一流軍隊(duì)的堅(jiān)定步伐.此次大閱兵不僅得到了全中國人的關(guān)注,還得到了無數(shù)外國人的關(guān)注.某單位有6位外國人,其中關(guān)注此次大閱兵的有5位,若從這6位外國人中任意選取2位做一次采訪,則被采訪者都關(guān)注了此次大閱兵的概率為(

A.B.C.D.

【答案】C

【解析】

先設(shè)這6位外國人分別記為,,,,,,其中未關(guān)注此次大閱兵,列舉出從這6位外國人中任意選取2位的基本事件總數(shù),再選出2位都關(guān)注大閱兵的基本事件數(shù),代入古典概型公式即可求得概率.

解:這6位外國人分別記為,,,,,,

其中未關(guān)注此次大閱兵,

則基本事件有,,,,,

,,,,,,

,,,,15個(gè),

其中被采訪者都關(guān)注了此次大閱兵的基本事件有10個(gè),

故所求概率為.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△中, , 分別為, 的中點(diǎn), 的中點(diǎn), , 將△沿折起到△的位置,使得平面平面 的中點(diǎn),如圖2

1求證: 平面

2求證:平面平面;

3線段上是否存在點(diǎn),使得平面?說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)若存在兩個(gè)不相等的正數(shù),,滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三年級(jí)有男生人,編號(hào)為,,;女生人,編號(hào)為,,,.為了解學(xué)生的學(xué)習(xí)狀態(tài),按編號(hào)采用系統(tǒng)抽樣的方法從這名學(xué)生中抽取人進(jìn)行問卷調(diào)查,第一組抽到的號(hào)碼為,現(xiàn)從這名學(xué)生中隨機(jī)抽取人進(jìn)行座談,則這人中既有男生又有女生的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,,,,且的最小值為,的圖象的相鄰兩條對(duì)稱軸之間的距離為,的圖象關(guān)于原點(diǎn)對(duì)稱.

(1)求函數(shù)的解析式和單調(diào)遞增區(qū)間;

(2)在中,角所對(duì)的邊分別為,且,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在等腰梯形中,,,中點(diǎn).為折痕將折起,使點(diǎn)到達(dá)點(diǎn)的位置,如圖(2.

1)求證:;

2)若,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“劍橋?qū)W派”創(chuàng)始人之一數(shù)學(xué)家哈代說過:“數(shù)學(xué)家的造型,同畫家和詩人一樣,也應(yīng)當(dāng)是美麗的”;古希臘數(shù)學(xué)家畢達(dá)哥拉斯創(chuàng)造的“黃金分割”給我們的生活處處帶來美;我國古代數(shù)學(xué)家趙爽創(chuàng)造了優(yōu)美“弦圖”.“弦圖”是由四個(gè)全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形,如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為,則等于(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某項(xiàng)娛樂活動(dòng)的海選過程中評(píng)分人員需對(duì)同批次的選手進(jìn)行考核并評(píng)分,并將其得分作為該選手的成績(jī),成績(jī)大于等于分的選手定為合格選手,直接參加第二輪比賽,大于等于分的選手將直接參加競(jìng)賽選拔賽.已知成績(jī)合格的名參賽選手成績(jī)的頻率分布直方圖如圖所示,其中的頻率構(gòu)成等比數(shù)列.

1)求的值;

2)估計(jì)這名參賽選手的平均成績(jī);

3)根據(jù)已有的經(jīng)驗(yàn),參加競(jìng)賽選拔賽的選手能夠進(jìn)入正式競(jìng)賽比賽的概率為,假設(shè)每名選手能否通過競(jìng)賽選拔賽相互獨(dú)立,現(xiàn)有名選手進(jìn)入競(jìng)賽選拔賽,記這名選手在競(jìng)賽選拔賽中通過的人數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案