【題目】如圖1,在△中, , 分別為 的中點(diǎn), 的中點(diǎn), , 將△沿折起到△的位置,使得平面平面, 的中點(diǎn),如圖2

1求證: 平面;

2求證:平面平面;

3線段上是否存在點(diǎn),使得平面?說明理由

【答案】(1)見解析;(2)見解析;(3)見解析

【解析】試題分析:(1取線段的中點(diǎn),由三角形中位線性質(zhì)以及平行四邊形性質(zhì)得四邊形為平行四邊形,即得.再根據(jù)線面平行判定定理得結(jié)論,2先根據(jù)等腰三角形性質(zhì)得.再根據(jù)面面垂直性質(zhì)定理得平面,即得,根據(jù)勾股定理得,所以由線面垂直判定定理得 平面,最后根據(jù)面面垂直判定定理得結(jié)論,3假設(shè)線段上存在點(diǎn),使得平面,則,與條件矛盾.

試題解析:

解:(1)取線段的中點(diǎn),連接,

因?yàn)樵凇?/span>中, , 分別為 的中點(diǎn),所以

因?yàn)?, 分別為 的中點(diǎn),所以 , ,

所以 , ,所以 四邊形為平行四邊形,所以

因?yàn)?平面, 平面,所以 平面

(2)因?yàn)樵凇?/span>中, , 分別為, 的中點(diǎn),所以

所以,又的中點(diǎn),

所以

因?yàn)槠矫?/span>平面,且平面,

所以 平面,所以

在△中, ,易知

所以 ,所以 平面

所以 平面平面

(3)線段上不存在點(diǎn),使得平面

否則,假設(shè)線段上存在點(diǎn),使得平面,

連接 , ,則必有 ,且

中,由的中點(diǎn), ,得的中點(diǎn).

在△中,因?yàn)?/span>,所以,

這顯然與 矛盾!

所以線段上不存在點(diǎn),使得平面

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示,且相鄰的兩個最值點(diǎn)的距離為.

1)求函數(shù)的解析式;

2)若將函數(shù)的圖象向左平移1個單位長度后得到函數(shù)的圖象,關(guān)于的不等式上有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),直線圖象的一條對稱軸.

1)求的單調(diào)遞減區(qū)間;

2)已知函數(shù)的圖象是由圖象上的各點(diǎn)的橫坐標(biāo)伸長到原來的4倍,然后再向左平移個單位長度得到,若,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校調(diào)查了200名學(xué)生每周的自習(xí)時(shí)間(單位:小時(shí)),制成了如圖所示的頻率分布直方圖,其中自習(xí)時(shí)間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,這200名學(xué)生中每周的自習(xí)時(shí)間不少于22.5小時(shí)的人數(shù)是

A. 56 B. 60 C. 120 D. 140

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的圖象為C,如下結(jié)論中正確的是(

①圖象C關(guān)于直線對稱;②函數(shù)在區(qū)間內(nèi)是增函數(shù);

③圖象C關(guān)于點(diǎn)對稱;④由的圖象向右平移個單位長度可以得到圖象C

A.①③B.②③C.①②③D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(Ⅰ)設(shè)命題實(shí)數(shù)滿足,其中,命題實(shí)數(shù)滿足.若的充分不必要條件,求實(shí)數(shù)的取值范圍.

(Ⅱ)已知命題方程表示焦點(diǎn)在x軸上雙曲線;命題空間向量,的夾角為銳角,如果命題“”為真,命題“”為假.求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖的多面體中,EF⊥平面AEB,AEEB,ADEFEFBC,BC=2AD=4,EF=3AE=BE=2,GBC的中點(diǎn).

(Ⅰ)求證:AB∥平面DEG;

(Ⅱ)求二面角C-DF-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是公差不為零的等差數(shù)列,滿足,且、、成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)數(shù)列滿足,求數(shù)列的前項(xiàng)和.

【答案】(1);(2)

【解析】試題分析:1)設(shè)等差數(shù)列 的公差為,由a3=7,且、成等比數(shù)列.可得,解之得即可得出數(shù)列的通項(xiàng)公式;

2)由(1)得,則,由裂項(xiàng)相消法可求數(shù)列的前項(xiàng)和.

試題解析:(1)設(shè)數(shù)列的公差為,且由題意得,

,解得,

所以數(shù)列的通項(xiàng)公式.

(2)由(1)得

.

型】解答
結(jié)束】
18

【題目】四棱錐的底面為直角梯形,,,,為正三角形.

(1)點(diǎn)為棱上一點(diǎn),若平面,求實(shí)數(shù)的值;

(2)求點(diǎn)B到平面SAD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需要,兩種原料,已知生產(chǎn)1噸每種產(chǎn)品所需原料及每天原料的可用限額如表所示.如果生產(chǎn)1噸甲、乙產(chǎn)品可獲得利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得最大利潤為( 。

原料限額

(噸)

3

2

10

(噸)

1

2

6

A. 10萬元B. 12萬元C. 13萬元D. 14萬元

查看答案和解析>>

同步練習(xí)冊答案