17.不等式tanx>a在x∈(-$\frac{π}{4},\frac{π}{2}$)上恒成立,則a的取值范圍(  )
A.a>1B.a≤1C.a<-1D.a≤-1

分析 根據(jù)正切函數(shù)的單調(diào)性求出tanx在x∈(-$\frac{π}{4},\frac{π}{2}$)上的范圍即可得到結(jié)論.

解答 解:∵x∈(-$\frac{π}{4},\frac{π}{2}$),
∴tan(-$\frac{π}{4}$)<tanx,
即tanx>-1,
若不等式tanx>a在x∈(-$\frac{π}{4},\frac{π}{2}$)上恒成立,
則a≤-1,
故選:D

點(diǎn)評(píng) 本題主要考查函數(shù)恒成立問(wèn)題,結(jié)合正切函數(shù)的單調(diào)性是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.為了整頓道路交通秩序,某地考慮對(duì)行人闖紅燈進(jìn)行處罰,為更加詳細(xì)闖紅燈人數(shù)的作用,在某一個(gè)路口進(jìn)行了五天試驗(yàn),得到當(dāng)天的處罰金額與當(dāng)天闖紅燈人數(shù)
當(dāng)天處罰金額x(單位:元)05101520
當(dāng)天闖紅燈的人數(shù)y8050402010
(1)根據(jù)以上數(shù)據(jù),建立當(dāng)天闖紅燈人數(shù)y關(guān)于當(dāng)天處罰金額x的回歸直線方程;
(2)根據(jù)統(tǒng)計(jì)數(shù)據(jù),上述路口每天經(jīng)過(guò)的行人約為400人,每人闖紅燈的可能性相同,在行0元處罰的情況下,記甲、乙、丙三人中闖紅燈的人數(shù)為X,求X的分布列和數(shù)學(xué)期望相互獨(dú)立).
附:回歸直線方程中系數(shù)計(jì)算公式b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}$,$\overline{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.曲線y=$\frac{1}{2}$x2+x在點(diǎn)(2,4)處的切線與坐標(biāo)軸圍成的三角形面積為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.證明:$\sqrt{ab}$≥$\frac{2ab}{a+b}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知A為橢圓$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1上的點(diǎn),點(diǎn)B坐標(biāo)為(2,1),有$\overrightarrow{AP}=2\overrightarrow{PB}$,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在正棱柱ABC-A1B1C1中,E,F(xiàn)分別為線段AA1,C1B的中點(diǎn),求證:EF∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{{x}^{2}-1}{{x}^{2}}$.
(1)證明f(x)為偶函數(shù);
(2)若不等式k≤xf(x)+$\frac{1}{x}$在x∈[1,3]上恒成立,求實(shí)數(shù)k的取值范圍;
(3)當(dāng)x∈[$\frac{1}{m}$,$\frac{1}{n}$](m>0,n>0)時(shí),函數(shù)g(x)=tf(x)+1,(t≥0)的值域?yàn)閇2-3m,2-3n],求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,且4sin2$\frac{A+C}{2}$-cos2B=$\frac{23}{9}$.求cosB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.用tanα表示$\frac{sinα+cosα}{2sinα-cosα}$,sin2α+sinαcosα+3cos2α.

查看答案和解析>>

同步練習(xí)冊(cè)答案