(本題滿分13分)
函數(shù).
(1)求證函數(shù)在區(qū)間上存在唯一的極值點(diǎn),并用二分法求函數(shù)取得極值時(shí)相應(yīng)的近似值(誤差不超過);(參考數(shù)據(jù),,)
(2)當(dāng)時(shí),若關(guān)于的不等式恒成立,試求實(shí)數(shù)的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(I)討論的單調(diào)性;
(II)若有兩個(gè)極值點(diǎn)和,記過點(diǎn)的直線的斜率為,問:是否存在,使得?若存在,求出的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若曲線在點(diǎn)處的切線的傾斜角為,求實(shí)數(shù)的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)實(shí)數(shù)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知.
(Ⅰ)若在上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)常數(shù)時(shí),設(shè),求在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知函數(shù),在點(diǎn)處的切線方程是(e為自然對(duì)數(shù)的底)。
(1)求實(shí)數(shù)的值及的解析式;
(2)若是正數(shù),設(shè),求的最小值;
(3)若關(guān)于x的不等式對(duì)一切恒成立,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分)已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若在是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在點(diǎn)處的切線方程為.
(I)求的表達(dá)式;
(Ⅱ)若滿足恒成立,則稱是的一個(gè)“上界函數(shù)”,如果函數(shù)為(R)的一個(gè)“上界函數(shù)”,求t的取值范圍;
(Ⅲ)當(dāng)時(shí),討論在區(qū)間(0,2)上極值點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)已知定義在上的函數(shù),其中為常數(shù).
(1)若是函數(shù)的一個(gè)極值點(diǎn),求的值;
(2)若函數(shù)在區(qū)間上是增函數(shù),求的取值范圍;
(3)若函數(shù),在處取得最大值,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)某投資公司投資甲、乙兩個(gè)項(xiàng)目所獲得的利潤分別是P(億
元)和Q(億元),它們與投資額t(億元)的關(guān)系有經(jīng)驗(yàn)公式P=,Q=t.今該公司將5
億元投資這兩個(gè)項(xiàng)目,其中對(duì)甲項(xiàng)目投資x(億元),投資這兩個(gè)項(xiàng)目所獲得的總利潤為y(億
元).求:(1)y關(guān)于x的函數(shù)表達(dá)式;
(2)總利潤的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com