(本題滿分12分)已知函數(shù),在點處的切線方程是(e為自然對數(shù)的底)。
(1)求實數(shù)的值及的解析式;
(2)若是正數(shù),設(shè),求的最小值;
(3)若關(guān)于x的不等式對一切恒成立,求實數(shù)的取值范圍
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(x∈R).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線x=1對稱,證明當(dāng)x>1時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知二次函數(shù)的圖象經(jīng)過點、與點,設(shè)函數(shù)
在和處取到極值,其中,。
(1)求的二次項系數(shù)的值;
(2)比較的大。ㄒ蟀磸男〉酱笈帕校;
(3)若,且過原點存在兩條互相垂直的直線與曲線均相切,求。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)的單調(diào)減區(qū)間是(1,2)
⑴求的解析式;
⑵若對任意的,關(guān)于的不等式在
時有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知函數(shù),,
(Ⅰ)當(dāng)時,若在上單調(diào)遞增,求的取值范圍;
(Ⅱ)求滿足下列條件的所有實數(shù)對:當(dāng)是整數(shù)時,存在,使得是的最大值,是的最小值;
(Ⅲ)對滿足(Ⅱ)的條件的一個實數(shù)對,試構(gòu)造一個定義在,且上的函數(shù),使當(dāng)時,,當(dāng)時,取得最大值的自變量的值構(gòu)成以為首項的等差數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)
函數(shù).
(1)求證函數(shù)在區(qū)間上存在唯一的極值點,并用二分法求函數(shù)取得極值時相應(yīng)的近似值(誤差不超過);(參考數(shù)據(jù),,)
(2)當(dāng)時,若關(guān)于的不等式恒成立,試求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax+blnx在x=1處有極值.
(1)求a,b的值;
(2)判斷函數(shù)y=f(x)的單調(diào)性并求出單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖象過點,且在內(nèi)
單調(diào)遞減,在上單調(diào)遞增.
(1)求的解析式;
(2)若對于任意的,不等式恒成立,試問
這樣的是否存在.若存在,請求出的范圍,若不存在,說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com