在等差數(shù)列中,,前項(xiàng)和為,等比數(shù)列各項(xiàng)均為正數(shù),,且,的公比.
(1)求與;(2)求.
(1)
(2)
解析試題分析:(1)根據(jù)題,由于等差數(shù)列中,,前項(xiàng)和為,等比數(shù)列各項(xiàng)均為正數(shù),,且,的公比.,則可知+3+d="12," ,聯(lián)立方程組可知d=3,q=3,故可知
(2)在第一問(wèn)的基礎(chǔ)上,由于=,故可知結(jié)論為。
考點(diǎn):等差數(shù)列和等比數(shù)列
點(diǎn)評(píng):主要是考查了等差數(shù)列和等比數(shù)列的通項(xiàng)公式以及求和的運(yùn)用,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列滿(mǎn)足:,,.
(Ⅰ)求的通項(xiàng)公式及前項(xiàng)和;
(Ⅱ)已知是等差數(shù)列,為前項(xiàng)和,且,.求的通項(xiàng)公式,并證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列滿(mǎn)足,且,
(1)當(dāng)時(shí),求出數(shù)列的所有項(xiàng);
(2)當(dāng)時(shí),設(shè),證明:;
(3)設(shè)(2)中的數(shù)列的前項(xiàng)和為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
等差數(shù)列的公差為,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列的首項(xiàng),公差,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別是等比數(shù)列的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè)數(shù)列對(duì)任意的,均有成立,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)已知實(shí)數(shù),求證:;
(2)在數(shù)列{an}中,,寫(xiě)出并猜想這個(gè)數(shù)列的通項(xiàng)公式達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列是等比數(shù)列,,公比是的展開(kāi)式中的第二項(xiàng)(按x的降冪排列).
(1)用表示通項(xiàng)與前n項(xiàng)和;
(2)若,用表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和.數(shù)列滿(mǎn)足:.
(1)求的通項(xiàng).并比較與的大小;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
下圖是一個(gè)按照某種規(guī)律排列出來(lái)的三角形數(shù)陣
假設(shè)第行的第二個(gè)數(shù)為
(1)依次寫(xiě)出第七行的所有7個(gè)數(shù)字(不必說(shuō)明理由);
(2)寫(xiě)出與的遞推關(guān)系(不必證明),并求出的通項(xiàng)公式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com