【題目】已知函數(shù)
(1)判斷函數(shù)的單調(diào)性,并說(shuō)明理由
(2)若對(duì)任意的恒成立,求a的取值范圍
【答案】(1)見解析;(2)
【解析】
(1)根據(jù)題意,直接把函數(shù)代入,然后根據(jù)定義法判斷該函數(shù)的單調(diào)性即可.
(2)根據(jù)題意,對(duì)函數(shù)的雙變量問(wèn)題一步步轉(zhuǎn)化,對(duì)任意的,恒成立等價(jià)于恒成立,然后化簡(jiǎn)得,可令,即求恒成立,最終轉(zhuǎn)化為,然后根據(jù)二次函數(shù)的性質(zhì)進(jìn)行討論,即可求出a的取值范圍.
(1) 的定義域?yàn)?/span>.
因?yàn)?/span>.
且在上單調(diào)遞增.
在上單調(diào)遞增,
所以在上單調(diào)遞增.
(2)因?yàn)?/span>,所以在上的最大值為.
對(duì)任意的,恒成立等價(jià)于恒成立,
即.
①當(dāng)時(shí),即時(shí),
,即,無(wú)解;
②當(dāng)時(shí),即時(shí),
,即,又,所以.
③當(dāng)時(shí),即時(shí),
,即,
又,此時(shí)無(wú)解.
綜上,a的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)是定義在上的奇函數(shù),且.
(1)確定的解析式;
(2)判斷并證明在上的單調(diào)性;
(3)解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l過(guò)點(diǎn)A(0,4),且在兩坐標(biāo)軸上的截距之和為1.
(Ⅰ)求直線l的方程;
(Ⅱ)若直線l1與直線l平行,且l1與l間的距離為2,求直線l1的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為偶函數(shù),且函數(shù)圖象的兩相鄰對(duì)稱軸間的距離為.
(1)求的值;
(2)求函數(shù)的對(duì)稱軸方程;
(3)當(dāng)時(shí),方程有兩個(gè)不同的實(shí)根,求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正三棱柱的高為2,是的中點(diǎn),是的中點(diǎn)
(1)證明:平面;
(2)若三棱錐的體積為,求該正三棱柱的底面邊長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓上的焦點(diǎn)為,離心率為.
(1)求橢圓方程;
(2)設(shè)過(guò)橢圓頂點(diǎn),斜率為的直線交橢圓于另一點(diǎn),交軸于點(diǎn),且, , 成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1,F2,且|F1F2|=2,點(diǎn)(1, )在橢圓C上。
(1)求橢圓C的方程;
(2)過(guò)F1的直線l與橢圓C相交于A,B兩點(diǎn),且△AF2B的面積為,求以F2為圓心且與直線l相切的圓的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知P點(diǎn)到兩定點(diǎn)D(﹣2,0),E(2,0)連線斜率之積為- .
(1)求證:動(dòng)點(diǎn)P恒在一個(gè)定橢圓C上運(yùn)動(dòng);
(2)過(guò) 的直線交橢圓C于A,B兩點(diǎn),過(guò)O的直線交橢圓C于M,N兩點(diǎn),若直線AB與直線MN斜率之和為零,求證:直線AM與直線BN斜率之和為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com