【題目】已知橢圓上的焦點為,離心率為

(1)求橢圓方程;

2)設過橢圓頂點,斜率為的直線交橢圓于另一點,交軸于點,且, , 成等比數(shù)列,求的值.

【答案】(1) 橢圓的方程為;(2)當, , 成等比數(shù)列時, .

【解析】試題分析:()由橢圓的性質容易求出參數(shù)a,b的值,從而求出橢圓方程;()設出直線方程,代入橢圓方程,求出點D、E的坐標,然后利用|BD|,|BE|,|DE|成等比數(shù)列,即可求解.

試題解析:()由已知.解得,所以,橢圓的方程為

)由()得過B點的直線為,由,所以,所以,依題意.因為|BD|,|BE||DE|成等比數(shù)列,所以,所以,即,當時, ,無解,當時, ,解得,所以,當|BD|,|BE|,|DE|成等比數(shù)列時,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調性;

(2)當有最大值,且最大值大于時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在北京召開的第24屆國際數(shù)學家大會會標如圖所示,它是由四個相同的直角三角形與中間的小正方形拼成的一個大正方形.若直角三角形中較小的銳角記作,大正方形的面積是1,小正方形的面積是,的值等于(

A. 1 B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)判斷函數(shù)的單調性,并說明理由

(2)若對任意的恒成立,求a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)是定義在上的偶函數(shù),且對任意的恒有,已知當時,,則下列命題:

①對任意,都有;②函數(shù)上遞減,在上遞增;

③函數(shù)的最大值是1,最小值是0;④當時,.

其中正確命題的序號有________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】不等式|x﹣ 的解集為{x|n≤x≤m}
(1)求實數(shù)m,n;
(2)若實數(shù)a,b滿足:|a+b|<m,|2a﹣b|<n,求證:|b|<

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設定義在(0,+∞)的單調函數(shù)f(x),對任意的x∈(0,+∞)都有f[f(x)﹣log2x]=6.若x0是方程f(x)﹣f′(x)=4的一個解,且 ,則a=( )
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)其中),的一條對稱軸離最近的對稱中心的距離為

的單調遞增區(qū)間;

中角、、的對邊分別是滿足恰是的最大值,試判斷的形狀

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 , ,

1)若 的充分條件,求實數(shù) 的取值范圍;

(2)若 ,”為真命題,“”為假命題,求實數(shù) 的取值范圍.

查看答案和解析>>

同步練習冊答案